PT Merdeka Copper Gold Tbk Treasury Tower 67 – 68th Floor District 8 SCBD Lot. 28 Jln. Jenderal Sudirman Kav. 52–53 South Jakarta 12910, Indonesia

6th March 2024

Pani Gold Project Construction Underway Exceptional Technical and Economic Viability Confirmed

Jakarta, Indonesia – PT Merdeka Copper Gold Tbk (IDX: MDKA) ("Merdeka" or the "Company") is pleased to announce positive Feasibility Study ("FS") results for its Pani Gold Project ("Pani" or the "Project"), located in the Province of Gorontalo, Sulawesi, Indonesia. The FS represents a high-quality evaluation of the Project, confirming Pani as a technically simple, multi-decade and low-cost open pit operation that is expected to generate attractive returns.

FEASIBILITY STUDY HIGHLIGHTS:

- Development underway of a large-scale, low-cost and long-life operation
 - o Pani will be a multi-decade mining operation with an ultimate processing capacity of 19.0Mtpa.
 - Peak gold production of approximately 500,000 ounces per annum positions Pani as one of the largest gold mines in Indonesia and the Asia-Pacific region.
 - o Initial heap leach operation with an ore processing capacity of 7.0Mtpa to maximise near term cash flow, producing approximately 140,000 ounces of gold per annum.
 - A second development phase utilising a carbon-in-leach ("CIL") gold recovery circuit with an initial ore
 processing capacity of 7.5Mtpa, expanding to 12.0Mtpa giving an ultimate processing capacity of 19.0Mtpa.
- Large-scale resource with considerable exploration success to date and substantial exploration upside
 - Mineral resource of 281.3Mt at a grade of 0.74 g/t gold for 6.7Moz of gold.
 - Ongoing drilling is expected to convert additional inferred resources to indicated category by Q2 2024.
 - o The FS models a production target of approximately 190Mt at a grade of 0.86 g/t gold for 5.3Moz of gold.
 - Pani orebody remains open and continued drilling is expected to increase the resource. The prospectivity of the Pani district is very appealing, with a multitude of prospects returning encouraging drilling and rock chip assay results.
- Robust project economics with post-tax NPV₈ scenarios ranging from US\$1.85 to US\$2.89 billion
 - FS Case: Post-tax NPV₈ of US\$1.85 billion and IRR of 32%, adopting conservative assumptions, delivering cumulative revenue, EBITDA and unleveraged free cash flow of US\$11.4 billion, US\$7.4 billion and US\$4.7 billion, respectively.
 - Management Cases: Post-tax NPV₈ of US\$2.89 billion and IRR of 41%, as gold price assumption increases alongside operational efficiency improvements, resulting in cumulative revenue, EBITDA and unleveraged free cash flow of US\$14.4 billion, US\$10.0 billion and US\$7.0 billion, respectively.
 - Estimated lowest quartile all-in sustaining cost ("AISC") of US\$872/oz over the initial life of mine ("LOM").
 - Low upfront capital expenditure of approximately US\$250 million to deliver initial heap leach operation, leveraging Merdeka's in-house construction expertise, and success in building and operating two Indonesian heap leach operations, combined with local contractors.
- Pani is a de-risked project with a clear pathway to first production
 - Merdeka completed substantial on-site development work in 2022 and 2023, investing approximately US\$114 million in resource definition, metallurgical testwork, and priority surface infrastructure. This is in addition to substantial expenditures invested in Pani prior to Merdeka ownership.
 - Financing initiatives are advanced and construction activities for the initial heap leach operation are progressing, targeting project commissioning in late 2025 and first gold pour in early 2026.
 - The Merdeka board and its major shareholders, Provident Capital, Saratoga Group and Thohir Group, have endorsed the FS results and approved the development of Pani.

FEASIBILITY STUDY OVERVIEW

Pani is a significant gold project hosting a resource containing more than 6.7Moz of gold. Pani is easily accessible via the Trans-Sulawesi highway and situated approximately 130km west of Gorontalo City. Merdeka owns an effective 70% interest in Pani.

Figure 1. Pani location

Feasibility study work, prepared with input from leading independent technical consultants, confirms Pani as a globally significant, long-life, low-cost, open-pit mining operation, that is based on a phased development plan to maximise returns.

The FS has been undertaken using conservative assumptions. A summary of key FS outcomes can be found below.

Table 1. Key Feasibility Study outcomes1

	Units	Heap Leach	Heap Leach + CIL
Macroeconomic			
Gold price	US\$/oz	2,000	2,000
Exchange rate	USD:IDR	15,050	15,050
Production			
Ore mined	Mt	63.0	191.2
Gold grade	g/t	0.71	0.86
Strip ratio	waste:ore	0.49	0.56
Gold recoveries	%	~80	~90
Initial mine life	years	2025 - 2035	2025 – 2041
Peak gold production	ounces p.a.	~140,000	~500,000
Operating Cost			
Cash cost	US\$/oz	722	592
AISC	US\$/oz	978	872
Economics			
Revenue (average per annum)	US\$m	237	686
EBITDA (average per annum)	US\$m	135	438
Unleveraged free cash flow (average per annum)	US\$m	78	278
Cumulative revenue	US\$m	2,571	11,422
Cumulative EBITDA	US\$m	1,485	7,445
Cumulative unleveraged free cash flow	US\$m	863	4,730
Post-tax NPV ₈	US\$m	397	1,853
IRR	%	26	32

¹ FS outcomes reported on a 100% basis. Merdeka has an 70% interest in Pani. Forecast financial information is based on a flat LOM gold price of US\$2,000/oz. Gold price, operating cost and capital investment are adjusted to nominal terms to reflect expected cost inflation at 2.0% per annum.

Figure 2. Production profile (koz) for the first 10 years of operation

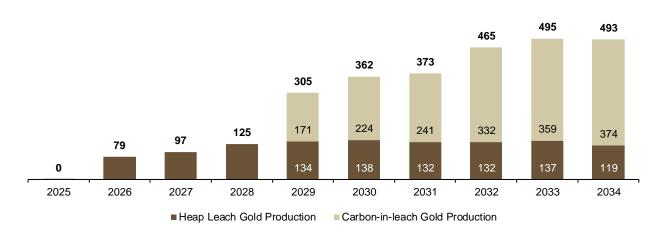
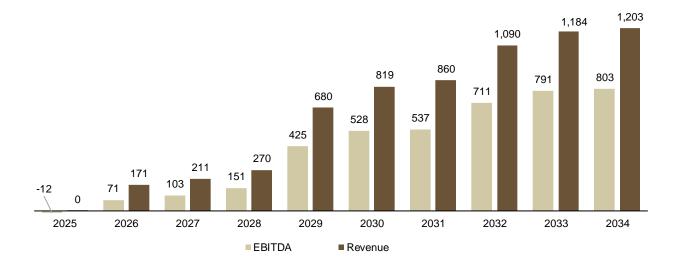



Figure 3. Estimated economics (US\$m) for the first 10 years of operation

+5%

-5%

-10%

MANAGEMENT VALUATION CASES

The FS results estimate Pani's potential economic value based on the mineral resources discovered and examined to date. Further project optimisation and resource growth can be expected as Merdeka concludes its current drilling program and project development advances towards commissioning activities.

The FS project economics are highly leveraged to changes in gold price and technical and operational assumptions.

Further upsides remain as the outlook for gold remains compelling and the investment fundamentals continue to strengthen. The gold price has increased on average 4.4% and 8.5% compounded annual growth rate ("CAGR") over the past ten and twenty years; therefore, given the historical price movements and the current forward gold price projections of up to US\$2,460/oz, the gold price assumption adopted in the FS can be considered conservative.

The management cases demonstrate the potential upside as project development progresses, considering factors such as the potential gold price, gold recoveries, operating cost and capital expenditure.

As further confirmatory metallurgical test work programs advance across the Pani deposit, ultimate crush size to recovery models shall be developed, ensuring the efficiency of the installed crushing plant. Test work programs to date indicate rapid leaching kinetics for the Pani deposit, thus confidence remains that ongoing test work shall support a reduction in leaching cycle times leading to faster revenue and reduced operating costs.

The potential consolidation of tailings storage solutions for the future CIL operation provides capital reduction opportunities from the initial FS case. This streamlined approach reduces capital costs and creates potential upside for increased profitability.

The robustness and significant upside of Pani is demonstrated in Table 2 below, containing several management cases with key input varying.

 FS Case
 Management Cases²

 1,853
 2,160
 2,564
 2,887

 32%
 36%
 40%
 41%

 Spot price
 2,300
 10-year CAGR

+2%

-2%

-5%

Table 2. NPV sensitivities

+2%

-2%

-5%

FS Case

Items

IRR

NPV₈ (US\$m)

Gold recoveries

Operating cost

Capital expenditure

Gold price

² Management cases assumes a range of gold prices and operational assumptions. Recent gold price high of approximately US\$2,100/oz and current gold futures price upwards of US\$2,300/oz adjusted to nominal terms to reflect expected price and cost inflation at 2.0% per annum. Management case also assumes a flat LOM gold price of US\$1,900/oz adjusted to nominal terms to reflect the 10-year historical gold CAGR of 4.4% and cost escalation at 2.0% per annum.

CAPITAL EXPENDITURE

Capital investment required to develop the initial heap leach operation is estimated to be US\$254 million, with commissioning activities commencing in late 2025. This capital investment includes the development of the mine, construction of the 7.0Mtpa ore processing facilities, heap leach pads, gold processing facilities, delivery of power to the site from the existing power grid and other supporting infrastructure. The heap leach facility will be constructed in stages to reduce upfront pre-production capital expenditure. Additional growth capital will be required for further heap leach stacking capacity at an estimated capital cost of US\$86 million from 2026 – 2028.

As Pani advances, CIL processing facilities (7.5Mtpa processing capacity increasing to 12.0Mtpa) and supporting infrastructure will be introduced. The 7.5Mtpa CIL circuit will commence construction in early 2027 and be commissioned in late 2028 at an estimated capital cost of US\$633 million. The expansion of the CIL circuit to 12.0Mtpa will commence in early 2030 and be commissioned by mid-2031 at an estimated capital cost of US\$294 million.

Merdeka is well advanced regarding low-cost project financing options and does not expect project funding to impact project timing in any way.

A breakdown of the capital expenditure is shown below.

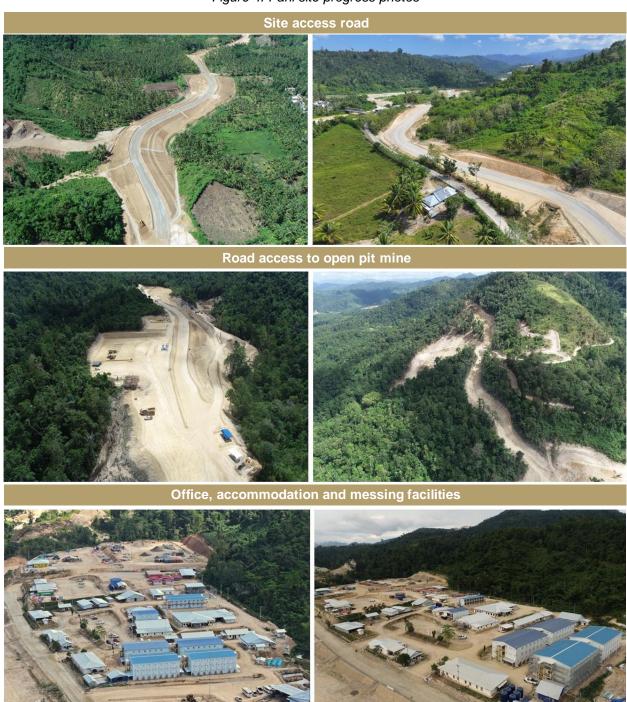
Table 3. Heap leach and CIL capital expenditure breakdown (US\$m)3

•	•	•	, ,	
	Heap L	each	CIL	
Description	Pre- Production	Growth (2026 – 2028)	Pre-Production	Growth (2028 – 2033)
Indirect Cost	74.9	7.2	73.0	33.3
Closeout studies	8.7	-	12.2	-
Project site support	15.8	-	-	-
External affairs	13.9	-	-	-
Project & construction management	17.6	7.2	38.5	29.9
Detailed engineering	4.5	-	22.3	3.4
Tech service & mine geology	14.4	-	-	-
Direct Cost	163.8	69.2	477.9	221.7
Mining	6.9	4.3	49.7	-
Bulk earthworks	27.6	-	30.9	-
Process plant	55.0	-	233.3	72.0
Heap leach	44.9	64.8	-	-
Tailings	0.0	-	89.9	137.2
Infrastructure	15.1	-	48.9	12.6
Utilities	14.3	-	25.2	-
Contingency	14.9	9.1	81.6	38.9
Total	253.6	85.6	632.5	293.8
Sustaining capex (per annum)	1.4 –	3.4	2.9 – 1	15.2

OPERATING COST

A breakdown of the estimated operating costs is summarised in the table below.

Table 4. Average LOM operating costs³ (US\$/t ore)


Items	Heap Leach	Heap Leach & CIL
Mining	5.4	5.0
Processing	5.4	8.9
G&A	2.9	2.2
Total operating costs	13.7	16.0

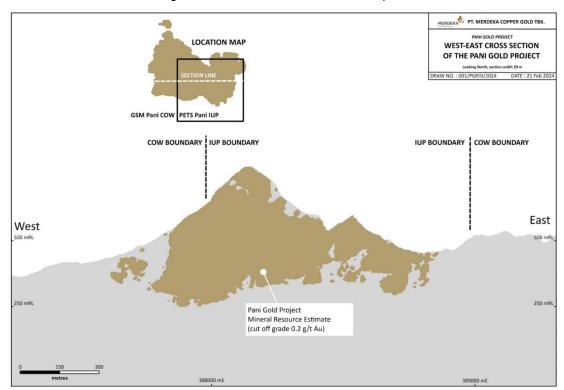
³ Capital expenditure and operating costs are adjusted to nominal terms to reflect expected cost inflation at 2.0% per annum.

PANI SITE PROGRESS

Figure 4. Pani site progress photos

MINERAL RESOURCES

The Pani mineral resource is situated within tenement areas held under PT Gorontalo Sejahtera Mining ("GSM") Contract of Work ("CoW") and PT Puncak Emas Tani Sejahtera ("PETS") Izin Usaha Pertambangan ("IUP").


Following an extensive drilling program, Merdeka issued a first combined Pani mineral resource estimate covering the entire orebody in January 2023.

As expected, the drilling has shown that the two previously separate resources are connected through the central Baganite zone to form one large continuous orebody. Further drilling since that initial combined resource has resulted in an updated mineral resource estimate containing 281.3Mt at a grade of 0.74 g/t gold for 6.7Moz of gold (refer to Table 5). The orebody remains open and continued drilling is expected to result in further increases in the size of the resource. Over 80% of the mineral resource is currently defined as indicated resource.

Gold Grade Tonnes Silver Grade Cont. Gold Cont. Silver Classification **Domain** (Mt) (Moz) (Moz) (g/t)(g/t)Indicated 175.6 0.76 0.97 4.3 5.5 Oxide Inferred 35.2 0.54 0.46 0.6 0.5 Sub-total 210.8 0.73 0.88 4.9 6.0 Indicated 38.0 0.90 0.71 1.1 0.9 **Transitional** Inferred 9.4 0.62 0.54 0.2 0.2 Sub-total 47.4 0.85 0.68 1.3 1.0 Indicated 15.4 0.67 0.67 0.3 0.3 Inferred 7.7 0.57 0.41 0.1 0.1 Fresh Sub-total 23.1 0.63 0.59 0.5 0.4 Indicated 229.0 0.78 0.91 5.7 6.7 AII Inferred 52.3 0.56 0.47 0.9 8.0 **Total** 281.3 0.74 0.82 7.5 6.7

Table 5. Pani mineral resource estimate4

⁴ Pani mineral resource reported with a cut-off grade of 0.2 g/t gold. The mineral resource estimate was prepared using the database extracted with a 14 June 2023 cut-off date which comprised of 1,289 holes totalling 235,543 metres of diamond drill hole samples. The drill hole spacing ranges from 150 metres by 150 metres to approximately 20 metres by 20 metres, Full details are available in the Appendices.

A drilling program will be completed in April 2024 to close out sterilisation drilling for project development areas, test geotechnical assumptions for pit slope design and infrastructure foundations, provide additional core for ongoing metallurgical test work, and tighten infill drill spacing along the Pani and Baganite ridge lines to improve the estimation of ore tonnes and grade that will be mined during the initial years.

When this drill program is completed, the Pani resource will remain open at depth and to the northeast into the Masina area.

In addition to the main Pani resource, there are numerous additional exploration targets within the license area. These prospects are shown in Figure 6, with historical significant drill results in Table 6.

385 000E m 392 500E m 395 000E m INDEX MAP LEGEND ★ Prospects Historical Drilling Roadlines River JUP PT PETS Totimbuale North COW PT GSM Resource Outlines (June 2023) Totimbuale South Lone Pine Tembaga Central Langge South Tembaga South MERDEKA PT. MERDEKA COPPER GOLD TBK. **Exploration Targets within** the Pani Tenement Area

Figure 6. Exploration targets within the Pani tenement area

Table 6. Significant intersections from historical drilling

Prospect	Drill hole	Depth From (metres)	Depth To (metres)	Interval Metres	Grade (g/t)
lohiyo	PTS-13	0	16	16	1.0
Jahiya	PTS-14	28	62	34	1.0
	KKD002	58	117	59	1.9
	KKD014	94	120	26	1.9
Kolokoa	PKD-02	27	73	46	0.8
	PKD-02	138	160	22	1.0
	PKD-02R	46	70	24	1.5
Langge	PLS-01	0	48	48	1.1
	LPD003	36	73	36	1.1
Lone Pine	PLD-01	50	62	12	1.5
	PLD-02	186	194	8	1.4
Tembaga South	PTS-02	62	72	10	2.7
	PTS-07	2	18	16	0.5
Tationhumala Cantle	DTC 40	26	42	16	1.0
Totimbuwale South	PTS-12	122	134	12	1.3

The targets which have not been drilled include:

- Wadi where historical rock chip channel sampling returned 2 metres @ 7.0 g/t gold
- Langge South with rock chips of 2 metres @ 1.1 g/t gold
- Totimbuale North with rock chips of 2 metres @ 36.0 g/t gold, 2 metres @ 8.4 g/t gold and 10 metres @ 1.2 g/t gold With the multitude of prospects with significant historical drilling and / or rock chip assays results, the prospectivity of the Pani district looks very appealing.

MINING AND PRODUCTION

Feasibility study work has outlined a staged mine development in which ore areas are progressively opened in alignment with ore requirements for the heap leach and CIL operations. Pani is expected to be a low-cost operation, attributable to low estimated stripping ratios of 0.49 during the heap leach operation and 0.56 over the combined heap leach and CIL operation.

Pani is designed to be a conventional surface mining operation, taking advantage of the topography and the shallow nature of the mineral deposit. Pani will be an owner-operated mine employing a combination of conventional hydraulic excavators/shovels and dump trucks.

The production target consists of ore reserves, indicated resources, and 10% inferred resources.

		-	_		
December 19 Mathed	Tonnes	Gold Grade	Silver Grade	Cont. Gold	Cont. Silver
Processing Method	(Mt)	(g/t)	(g/t)	(Moz)	(Moz)
Heap Leach	63.0	0.71	1.08	1.4	2.2
CIL	128.1	0.93	0.85	3.8	3.5
Total	191.2	0.86	0.92	5.3	5.7

Table 7. Pani production target⁵

The majority of inferred resources are within the heap leach pit. The current phase of drilling, scheduled for completion in April 2024, aims to increase indicated resources within the proposed heap leach pit. Formal ore reserve estimates for the near-term heap leach operation have been defined, and the study of conventional wet tailings storage is well-advanced. Merdeka is confident that a successful conclusion will bring the CIL production target, or part thereof, into ore reserves.

Figure 7. Pani ultimate pit (Production Target)

⁵ This figure represents Pani's production target as of 31 December 2023. Production target is reported at gold price of US\$1,650/oz and no allowance has been made for silver credits in calculating the cut-off grade. Production target is inclusive of ore reserves with 10% (approximately 20 Mt) of the total tonnes being inferred resources. The stated "production target" is based on the Company's current expectations of future results. In this instance, conversion of inferred resources to indicated resources and appropriate studies are required to establish sufficient confidence before it can be reported as an ore reserve. Different cut-off grades have been applied to address dufferent recoveries due to oxidation types and different processing types. The cut-off grades applied to estimate the production target are: 0.37 g/t Au (Oxide, Transition and Fresh) for CIL; Oxide = 0.28 g/t Au, Trans = 0.32 g/t Au, Fresh = 0.49 g/t Au, Trans = 0.32 g/t Au, Trans = 0.32

METALLURGY AND PROCESSING

Heap Leach

Test results from several work programs on Pani material indicate good to excellent amenability to heap leach processing. Additional test work was ongoing for all of 2023 and continued into 2024 to improve understanding of the deposit and to build up the metallurgical results database for operational readiness.

Pre-development infrastructure such as site access roads, accommodation camps, mobile fleet maintenance facilities, and offices is complete. Bulk earthworks have commenced. Construction of the processing facilities and related surface infrastructure is advancing in a phased approach to meet production ramp-up rates.

The heap leach plant will process 7.0Mtpa of ore and comprise a three-stage crushing circuit producing a P100 19 mm (100% passing 19 mm) product. Lime will be added as a neutralising binder and stacked onto the heap leach pad using truck dumping and spreading. The primary leach cycle is estimated to be 50 days, with a secondary leach cycle of 90 days.

Gold is recovered from solution using a pressure carbon in column system, elution, and electrowinning before being smelted into doré bars.

Heap leaching is an efficient and cost-effective (low pre-production capital and operating cost) method of recovering gold.

Merdeka has considerable heap leach operating experience, which is currently adopted at its Tujuh Bukit gold mine and Wetar copper mine.

A simplified heap leach process flow diagram is presented below.

CRUSHED ORE STOCKPILE SECONDARY PRIMARY SECONDARY ROM PRIMARY SCREENING CRUSHING CRUSHING SCREENING SERVICES: TERTIARY TRUCK Water CRUSHING LOAD-OUT FACILITY Power ORE PREPARATION HEAP LEACH PAD SERVICES: BARREN Water Diesel ILS PLS REAGENTS: Cyanide Lime Sodium Hydroxide CARBON ADSORPTION REGENERATION Flocculant STORM WATER Copper Sulphate POND Hydrochloric Acid Peroxide PLS Antiscalant **SCAVENGER** ILS Antiscalant COLUMN Diatomaceous ELUTION/ACID WASH EW PRODUCT Earth Carbon Caustic ➤ DISCHARGE SLUDGE **ENVIRONMENTAL** WATER TREATMENT HEAP LEACH AND ADR

POND

Figure 8. Heap leach flow sheet

Carbon-In-Leach

The 7.5Mtpa processing plant comprises primary crushing, SAG, and ball mill ("SAB") grinding circuits with GRG and intensive cyanidation, a CIL circuit followed by cyanide detoxification, tailings thickening, and disposal. Carbon loaded with precious metal is treated in an acid wash, desorption, and regeneration ("ADR") circuit, with precious metal recovery by electrowinning, filtration, and smelting to produce doré bars ready for refining.

The GRG / CIL plant will process an initial 7.5Mtpa of material, expanding to 12.0Mtpa.

A second ball mill and pebble crushing will be installed when expanding to 12.0Mtpa to maintain the target grind size at the increased throughput with changing material characteristics as depth increases.

Metallurgical testing confirms that the Pani resource is amenable to processing via a gravity gold recovery ("GRG") and CIL flowsheet at a coarse grind for gold recoveries of 93% to 99%.

CIL processing is a common and well-understood method of efficiently extracting and recovering gold.

A simplified CIL flow sheet and processing plant layout are presented below.

Figure 9. CIL flow sheet

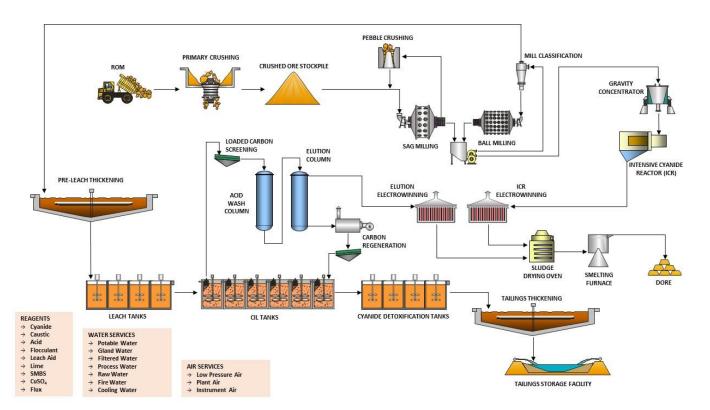



Figure 10. Layout of the comminution circuit and CIL tanks

SUPPORTING SITE INFRASTRUCTURE

Power Supply

Pani is less than 15km from a 150kV main substation operated by Perusahaan Listrik Negara ("PLN"), the Indonesian state-owned national power supplier.

In the North Sulawesi and Gorontalo regions, PLN has an electricity surplus of 200MW, which is more than sufficient for the electricity requirements of Pani during maximum production capacity when the heap leach operation (10.3MW) and CIL operation (52.7MW) are running in parallel.

A Memorandum of Understanding ("MoU") was signed between Merdeka and PLN in August 2022 to supply 30MVA of electricity for the heap leach operation, followed by signing the electricity sale and purchase agreement in August 2023. The agreement will be amended to increase power requirements when the CIL plant comes online.

In Q4 2023, PLN commenced permitting, designing, and constructing a 13km 150kV Transmission Line consisting of 38 Towers. The target is to energize this 150kV line in late Q3 2025 and distribute 20kV overhead power to the heap leach operation.

Water Supply

Surface water extraction opportunities are abundant, and accommodation and other supporting facilities are sourcing water from deep bores developed across the tenement area.

Water collected from the heap leaching operations can be treated and reused as process water or discharged directly from the property.

Permitting is advanced, and the infrastructure shall be in place before commissioning activities.

Tailings

The CIL operation will produce tailings delivered to two tailings storage facilities ("TSF").

The initial TSF design will take advantage of the existing topographic and ground conditions north of the open pit. It will be commissioned by late 2028 and provide enough capacity for 27Mt of tailings, sufficient for approximately four years of storage.

Permitting is being advanced in parallel with geotechnical investigation, surface water management systems, materials for construction testing and design calculation activities.

A second TSF located approximately 8km from the CIL plant will accommodate the remaining life of mine tailings production with an estimated capacity of up to 200Mt of tailings.

For further information please contact:

Investor Relations

PT Merdeka Copper Gold Tbk

Treasury Tower 67 – 68th Floor

District 8 SCBD Lot. 28

Jln. Jenderal Sudirman Kav. 52-53

South Jakarta 12910, Indonesia

E: investor.relations@merdekacoppergold.com

APPENDICES

COMPETENT PERSON'S STATEMENT - PANI GOLD PROJECT

Exploration Results and Targets and Mineral Resources

The information in this report which relates to Mineral Resources is based on, and fairly represents, information compiled by Arief Bastian BSc (Hons). Mr. Bastian is full-time employee of PT Sulawesi Cahaya Mineral, PT Merdeka Copper Gold Tbk's subsidiary.

Mr Bastian is listed as a CPI IAGI (#CPI-066), a Member of the Indonesian Geologists Association, a Member of a Masyarakat Geologi Ekonomi Indonesia, and a Member of Australian Institute of Geoscientists (AIG-#7237).

Mr. Bastian has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2017 Kode KCMI for Reporting of Exploration Results, Mineral Resources and Mineral Reserves, and the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves".

Mr. Bastian consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

APPENDIX 1

KCMI KODE 2017, JORC CODE, 2012 EDITION – TABLE 1 REPORT

Section 1. Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc).	A total of 1,289 diamond drill holes from various drilling campaigns were used in the Pani Mineral Resource Estimate (MRE). The drilling totalled 235,543 m, and 144,966 assays are stored within the database. Not all of the drill holes intersected mineralisation. The recent historic drilling is reported within either PT. Puncak Emas Tani Sejahtera (PETS) or Gorontalo Sejahtera Mining (GSM) tenements.
	These examples should not be taken as limiting the broad meaning of sampling.	The historical drilling conducted by Utah International (7 holes), BHP - Utah JV (22 holes), Newcrest Nusa Sulawesi (28 holes) and KUD (Dharma Tani Marisa) - Paramount Joint Venture (JV; 16 holes) have been excluded from the MRE because these holes don't intersect the mineralisation or they did not pass Merdeka's internal validation checks.
		PETS Pre 2019 Channel Sampling
		Historic channel sampling of surface exposures was conducted together with geological mapping programmes throughout the history of the project and consisted of:
		 2,514 channel samples were collected. Depending on lithology, samples were collected from 10cm wide by 10 cm deep channels, 1m or 2m long. The sampled material was mixed, coned and quartered, with samples consisting of two-quarter samples from opposite sides of the cone. Channel samples did not form part of the dataset on which the current MRE is based.
		Diamond Drilling Diamond drilling on a nominal 50 m by 50 m grid was used to obtain subsurface samples. Infill drilling of the 50 m x 50 m pattern with offset centres has resulted in a 35 m x 35 m coverage in the better-drilled regions. Drilling within the PETS area consisted of:
		 137 drill holes (HQ) for 26,017.5 m and sampled on 1 m intervals guided by the lithology, alteration, oxidation and structural logging. Samples were cut in half along the core axis and the right-hand side sampled.
		The 137 drill holes were resampled in 2022 to improve the sampling and assaying methodologies. At the time of the MRE, 100% of the Au assays from the 2022 resampling program were received and 50% of the multielement data was received.
		GSM Pre 2019 A total of 668 diamond holes for 104,842.50m were used in the MRE from the GSM project area drilled by J Resources since 2011. The diamond drill hole spacing ranges from 25 m by 25 m to 15 m by 25 m in the better-drilled areas. Sampling includes:
		 Core was sampled on intervals averaging 1 m guided by the lithology, alteration, oxidation and structural logging. The core was cut along orientation lines, and one side of the core was consistently sampled. The core sizes ranged from PQ, HQ to NQ. No adjustments or calibrations were made to any assay data used in reporting
		PETS & GSM Post 2019 The reported samples were obtained through diamond drilling methods collected from campaigns completed since December 2019 until June 2023 the sampling includes:
		 A total of 395 diamond drill holes for 91,672.65m. Core was sampled on 2 m intervals and was drilled using PQ3 and HQ3 core sizes. The core was sampled as half-core cut parallel to the orientation line, and the right-hand side of the core was consistently sampled. No adjustments or calibrations were made to any assay data used in reporting

Criteria	JORC Code Explanation	Commentary
	Include reference to measures taken to ensure sample representativity and the appropriate calibration of any measurement tools or systems used	 PETS Pre 2019 The historical drilling (HQ) was conducted using triple-tube diamond core drilling to improve core quality. The diamond drill core was sawn in half, and one side of the core was consistently sampled. GSM Pre 2019 The historical drilling was conducted using triple-tube diamond core drilling to improve core quality. The larger core size (PQ) was drilled to improve the core quality near the surface. The diamond drill core was sawn in half, and the one side core was routinely sampled. PETS & GSM Post 2019 PQ core was drilled from the collar to a nominal depth to improve the quality of the core and provide enough samples for metallurgical test
		work. The diamond drill core was sawn in half, and the right-hand side downhole is routinely sampled.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 metre samples from which 3 kilograms was pulverised to produce a 30 grams charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 PETS Pre 2019 The diamond drill core was sampled on approximately 1 m intervals guided by geological logging. The sample preparation and assaying were conducted at PT SGS Indo Assay Laboratories, Manado. The sample preparation involved: Crushing the half core (~3kg) to 75% -25mm. Riffle splitting and crushing 1 kg to 75% passing at 2 mm. Pulverising of the 1 kg to 85% -75 μm. A 200g sample split is taken, and the pulp residue is stored. Samples were assayed for: Au: 50g fire assay. Multielement: 3 or 4 acid digest with ICP OES finish. No adjustments or calibrations were made to any assay data used in reporting The 137 drill holes from the PETS IUP were resampled in 2022 to ensure sample preparation and assaying are representative of the mineralisation. At the time of the MRE, 50% of the PETS multi-element assays were based on the 2022 resampling program and all of the 50g FA results were received for Au. GSM Pre 2019 Core sample intervals average 1 m in the mineralised zones and the
		sample length was guided by the lithology, alteration, oxidation and structural logging. The unmineralised intervals were sampled at 2 m. Sample preparation was conducted at Intertek Manado Sample preparation facility or by SGS managed site preparation facility (post 2016). The Intertek Manado sample preparation procedure has not been confirmed. The SGS preparation included: Half core samples (3 to 7 kg) are weighed and dried at 105°C for 8 hours. The dried sample is crushed using a jaw crusher followed by a Boyd / Roller crusher to 90 % passing at 3 mm. A nominal 1 kg was split and pulverised using an LM2® pulveriser to 90 % passing at -75 µm. A 250 g sample split (pulp) is sent to the laboratory for analysis and
		the pulp residue was stored. Samples were assayed for: Au: 50 g fire assay. Multielement: XRF, 2 or 3 acid digest with ICP OES finish. No adjustments or calibrations were made to any assay data used in reporting. No multielement data was used to estimate the economically significant variables (i.e. Au). PETS & GSM Post 2019 The core was sampled at 2 m intervals. The samples were prepared by PT Intertek at either their Manado or Marisa preparation laboratories or at the BSI sample preparation facility at Tujuh Bukit (PDH131 to PDH147).
		The sample preparation included: Core samples are weighed, dried at 105°c for 12 - 24 hours and weighed. Pre-crushed to 6 mm using Terminator Jaw crusher and then

Criteria	JORC Code Explanation	Commentary
		crushed to 2 mm at a 95% passing using a Boyd Crusher with a rotary splitter. • A 1.5 kg split of the crushed material is pulverised to P95% at 75 µm size. • A barren washed is pre-crushed, crushed, and pulverised after each sample. • A representative 250 g split of pulverised material is transported directly from the preparation facilities to Geoservices Jakarta for analysis. • Short Wave InfraRed (SWIR) data is collected using a TerraSpec device on some the core and assay pulps. The TerraSpec is calibrated before each session. No SWIR data is used in the estimation of the economic variables. • Handheld XRF measurements on pressed pellet pulps commenced on the 30th of September 2022. A total of 6,979 samples were measured as at 14/06/2023 using a XRF X-550 on selected samples from representative sections. The XRF is calibrated every day before measurements. • LIBS measurements on pressed pellet samples started on the 21st of September 2022. A total of 6,893 samples were measured as at 14/06/2023 using a LIBS Z-300 on selected samples from representative sections. The LIBS is calibrated every day before measurements.
Drilling Techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 PETS Pre 2019 A total of 137 diamond drill holes for 26,017.5 m of drilling is being reported currently. Drilling is based primarily on HQ3 size. Historical reports indicated the drilling was conducted using triple tube diamond drilling methods. Drillhole depth varied from 57.8 m to 410.8 m. GSM Pre 2019 A total of 668 diamond drill holes totalling 104,842.50 m were used in the MRE. The core sizes range from PQ, HQ and NQ, using triple tube drilling methods. Core was oriented wherever possible using Orishot / Proshot and marked at the drill site to provide a consistent orientation. Drillhole depth varied from 14.75 m to 415 m. PETS & GSM Post 2019 A total of 395 diamond drill holes for 91,672.65m was used in the estimate, and the drilling is based on triple tube PQ3 and HQ3 size. Where possible, all core is orientated every run using a Suntech orientation tool. Downhole surveys were conducted with a REFLEX EZ TRAC every 25 m to 50m downhole. The calibration of all downhole tools is reviewed and calibrated biweekly. Downhole survey tools are supplied by IMDEX company.
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	 PETS Pre 2019 Core recovery and drill metreage was recorded at the drill site before the core was transported to the core shed. The recovery is equivalent to the length of the core recovered and storage as a percentage of the drill run. No grade was assigned to intervals of core loss, and core loss was treated as null values. GSM Pre 2019 Core recoveries were monitored, recorded and stored within the sampling database. The core recovery was monitored at the rig by a Geotechnician. The recovery was measured in the core tube by the driller and a marker was inserted into the core tray to mark any core loss. All core is laid out at the rig in ½ PVC pipe for inspection. Depths are measured and checked against marked depths on the core blocks. Sample recovery was stored in the RQD logging table. No grade is assigned to intervals of core loss, and core loss was treated as null values. PETS & GSM Post 2019 Measurements of core loss and recovery were made at the drill rig by geotechnical logging technicians and stored in Geobank Database. Core was marked up relative to core blocks making allowance for any sections of lost core. All core loss was clearly identified in the core trays by inserting a length of yellow plastic matching the area of core loss and marked as "core loss". No grade is assigned to intervals of core loss and core loss was treated as null values.

Criteria	JORC Code Explanation	Commentary
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	PETS Pre 2019 Historical drilling was conducted using triple tube diamond drilling methods to maximise sample recovery. Geotechnicians at the drill sites would instruct drill teams to reduce
		sample lengths if the measured core loss was deemed a concern. GSM Pre 2019 Historical drilling was conducted using triple tube diamond drilling methods to maximise sample recovery. PETS & GSM Post 2019 Core recovery is maximised by the use of triple drilling methods, drilling PQ core from the collar location and reducing the drill runs to 1.5m. Core recovery is recorded for every run, and average recovery for the intervals.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	PETS Pre 2019 Overall recoveries are greater than ~ 95 %, and it is assumed no bias is expected to be associated with core loss. GSM Pre 2019
		 The average recovery for the project area is greater than ~ 97 %, and it is assumed no bias is expected to be associated with core loss. PETS & GSM Post 2019
		 The average recovery for the project area is greater than ~ 96 %. No specific study has been conducted to determine if there is a relationship between core loss and grade. A scatter plot analysis suggests there is no observable trend. Globally, the core recoveries are generally high and it was assumed core loss is not material.
	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 GSM Pre 2019 Standard operating procedures using J Resources logging codes were used for the logging of diamond core samples. All diamond core holes have been geologically logged for lithology, oxidation type, alteration type, density of veins and fractures, mineral type, mineral occurrence and intensity. Geotechnical data comprising core size, core recovery, Rock Quality Designation (RQD), core orientation, and number of fractures are routinely recorded. The geological logging is suitable for MRE, mining and metallurgical studies PETS & GSM Post 2019 All drill core is geologically, geotechnically, and structurally logged. Logging fields include (but are not limited to) lithology, alteration, mineralisation, structure, RQD, and defect angles. Standard nomenclature is used for logging and codes or
Logging		 abbreviations are input directly into computerised logging sheets. A rock board has been established at the core processing facility to promote consistent and correct logging. The company uses Geobank Mobile by Micromine as the front-end data entry platform to the SQL backend. Starting in December 2022, Equotip readings are collected at 10 cm intervals, which are averaged and reported at 1 m intervals. Logging is of a suitable standard to allow for MRE, mining and metallurgical studies
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	 PETS Pre 2019 Lithology and alteration logging is qualitative in nature. Quartz veins, fracture intensity, oxidation and percentage sulphides logging is quantitative in nature. The orientation of fabrics and structural features have been recorded and are quantitative. All core is photographed. GSM Pre 2019
		The majority of geological and geotechnical logging is qualitative except for measured fields for structure, RQD and fracture frequency. All core was photographed. PETS & GSM Post 2019
		 The majority of geological and geotechnical logging is qualitative in nature except for measured fields for structure (α and β), RQD and

Criteria	JORC Code Explanation	Commentary
		fracture frequency which is quantitative. • All core is photographed.
	The total length and percentage of the relevant intersections logged.	PETS Pre 2019 • All drill core has been geologically logged. GSM Pre 2019
		All drill core has been geologically logged. PETS & GSM Post 2019 All drill core has been geologically logged.
		 All drill core has been geologically logged. Logging is of a suitable standard to allow for detailed geological and resource modelling.
	If core, whether cut or sawn and whether quarter, half or all core taken	 PETS Pre 2019 The diamond drill core (HQ diameter) is halved using a core saw. Duplicate samples were taken, approximately 1 in 30 samples. In this case, the core was cut into three pieces to allow duplicate sampling and the retention of archival material. The portion retained was small, so the primary sample and the duplicate are close to half core.
		Standard operating procedures were used for diamond core subsampling, and mineralised zones were sampled to 1 m and unmineralised zones were sampled to 2 m. The actual length honours lithological, alteration and mineralisation boundaries. Core was cut along the orientation line and half core samples are submitted for analysis, unless a field duplicate is required, in which
		case quarter-core samples are submitted. PETS & GSM Post 2019 Core is longitudinally cut with a saw and half core samples were
	If you care whether willed tube	collected at two (2) intervals. Looking downhole, the right hand side of the core is routinely sampled under geological supervision. N/A
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	PETS Pre 2019 The sample preparation and assaying were conducted at PT SGS Indo Assay Laboratories. The sample preparation involved:
Sub-sampling techniques and		 Crushing the half core (~3kg) to 75% -25mm Riffle splitting and crushing 1 kg to 75% passing at 2 mm. Pulverising of the 1 kg to 85% -75 µm. A 200 g sample split is taken, and the pulp residue is stored.
sample preparation		The 137 drill holes were resampled in 2022 to evaluate the sampling preparation and assaying methodologies. Refer to PETS & GSM 2022 section for further details. At the time of the MRE, 34% of the PETS assays are based on the 2022 resampling program.
		GSM Pre 2019
		Sample preparation was conducted at Intertek Manado Sample preparation facility or by SGS managed site preparation facility (post 2016). The Intertek Manado sample preparation procedure has not been confirmed, and it is assumed to meet industry standards. The SGS preparation included:
		 Half core samples (3 – 7 kg) are weighed and dried at 105°C for 8 hours. The dried sample is crushed using a jaw crusher followed by a
		 Boyd / Roller crusher to 90 % passing at 3 mm. A nominal 1 kg was split was pulverised using an LM2® pulveriser to 90 % passing at -75 μm. A 250 g sample split (pulp) is sent to the laboratory for analysis and the pulp resided is stored.
		The preparation of the samples was deemed appropriate for MRE and economic evaluation of the project.
		PETS & GSM Post 2019 The samples were prepared by PT Intertek at either their Manado or Marisa preparation laboratories. The sample preparation included:
		 Core samples are weighed, dried at 105°c for 12 - 24 hours and weighed. Pre-crushed to 6 mm using Terminator Jaw crusher and then crushed to 2 mm at a 95% passing using a Boyd Crusher with a rotary splitter.

Criteria	JORC Code Explanation	Commentary
		 A 1.5 kg split of the crushed material is pulverised to P95% at 75 µm size. A barren washed is pre-crushed, crushed, and pulverised after each sample. A representative 250 g subsample of pulverised material is transported directly from the preparation facilities to Geoservices Jakarta for analysis.
	Quality control procedures adopted for all sub-sampling stages to maximise representativity of samples. Measures taken to ensure that the sampling is representative of the insitu material collected, including for instance results for field.	PETS Pre 2019 The QAQC procedures implemented included: Inserting certified reference materials (CRM) at a rate ranging from 2 % to 4 %. Field or core duplicates were performed at a rate of approximately 2 %. Insertion of blank material occurred at a rate ranging from 1 % - 2 %. Pulp duplicates were submitted to a secondary laboratory for analysis at a rate of approximately 2.5 %. Historical documentation indicates size analysis was conducted at a rate of 5% for the primary crushing and pulverising stages but no results are documented. GSM Pre 2019 The QAQC procedures implemented included CRM, blanks and duplicates: CRM's were inserted at a rate of 5 %. Blanks were inserted at a rate of 2.5 %. Duplicate checks of the pulverised material (5 %) and coarse residue (2.5 %) were submitted to a second or umpire laboratory. Quarter core duplicates were conducted at a rate of 2.5 %. The grind size analysis of the pulverised material was conducted at a rate of 5 %. PETS & GSM Post 2019 QAQC protocols included the insertion of CRM (commercial and matrixmatched), duplicates, and blanks. Matrix matched CRM's were created by OREAS and were used since November 2022. The samples were submitted to the laboratory for analysis in batches of 45 samples containing: 2 x CRM or an insertion rate of 5% 2 x coarse (2 mm) duplicates or an insertion rate of 5% 1 x coarse blank or an insertion rate of 2.5% External checks and blind resubmissions of pulp duplicates to an umpire laboratory are conducted at a rate of 5%. Analysis of QAQC results suggests sample assays are with acceptable tolerances. PETS Pre 2019 Field or core duplicates at a rate of approximately 2 %. Pulp duplicates were submitted to a secondary laboratory for analysis at a rate of approximately 2.5 %.
	duplicate/second-half sampling.	GSM Pre 2019 Duplicate sampling and assaying were conducted at a rate of 5 % for pulverised material and 2.5 % for coarse (2 mm) duplicates. PETS & GSM Post 2019 Duplicate sampling and assaying were conducted at a rate 5 % using coarse (2 mm) duplicates. Duplicate pulverised material was inserted at rate of 5 % and submitted to a secondary / umpire laboratory.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Disseminated gold mineralisation ranges from very fine to coarse grain size. Sample size (1m to 2m half core) and partial sample preparation protocols are considered appropriate for this style of mineralisation.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 PETS Pre 2019 Au analysis carried out by PT SGS Indo Assay Laboratories: Au by 50g fire assay with AAS finish. Ag, Cu, Pb, Zn, As, S by 4 acid digest with ICP-OES finish; selected intervals. S by combustion fumace; selected intervals. Quality control procedures included the use of standards, blanks and duplicates, as well as the use of an external umpire laboratory.

Criteria	JORC Code Explanation	Commentary
		The drill holes from the PETS IUP were resampled in 2022 to ensure that the sample preparation and assaying are appropriate for the mineralisation. At the time of the MRE, of the PETS assays are based on the 2022 resampling program. GSM Pre 2019
		Au analysis carried out by PT Intertek and PT SGS Indo Assay Laboratories.
		 Au by 50g fire assay with AAS finish. Ag, Cu, Pb, Zn, As, S by 4 acid digest with ICP-OES finish; selected intervals. S by combustion fumace; selected intervals.
		Quality control procedures included the use of standards, blanks and duplicates, as well as the use of an external umpire laboratory. PETS & GSM Post 2019
		The preparation and assay laboratories are internationally certified (ISO 17025) laboratories and hold an Indonesian Accreditation Certificate (KAN).
		The methodology employed for the main elements of interest are summarised below.
		 Gold is determined by 50 g fire assay with determination by AAS. Silver, post 20th of March 2023, is determined using two-acid digestion (not aqua regia) followed by an AAS finish to lower the lower detection limit to 0.1 g/t. A multielement suite is analysed using four-acid digestion with an ICP-OES finish. All work has been completed at Geoservices Jakarta. The bulk nature of the sample size (2m) and partial preparation procedures (total crush to P95 - 2mm, 1.5kg split pulverised to P95 - 75 µm size) is considered appropriate for this style of mineralisation. Four acid total dissolution is used for assaying.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their	PETS Pre 2019 Nil GSM Pre 2019 Spectral tools were used historically, and these results were not used in the current MRE process.
	derivation, etc.	 PETS & GSM Post 2019 SWIR data is collected on some of the core and assay pulps. The TerraSpec device is routinely calibrated before starting to analyse the samples. Handheld XRF measurements on press pulp pellets commenced on the 30th of September 2022. A total of 6,979 samples were measured as of the 14/06/2023 using a XRF X-550 on selected samples from representative sections. The XRF is calibrated every day before measurements. LIBS measurements on press pulp pellet samples were started on the 21st of September 2022. 6893 samples were measured as of the 14/06/2023 using a LIBS Z-300 on selected samples from representative sections. The LIBS is calibrated every day before measurements. These tools were not used in the current MRE process.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 PETS Pre 2019 Quality control procedures included the use of standards, blanks and duplicates, as well as the use of an external umpire laboratory. The QAQC indicates these were inserted at a rate of 5%. QAQC analyses indicate the assay results to be within acceptable tolerances, and this is reflected in the classification of the resource. GSM Pre 2019
		 QAQC protocols included the insertion of CRM were inserted at a rate of 5 %, blanks were inserted at a rate of 2.5 %, duplicate checks of the pulverised material (5 %) and coarse residue (2.5 %) were submitted to a second or umpire laboratory. Quarter core duplicates were conducted at a rate of 2.5 % and grind size analysis of the pulverised material was conducted at a rate of 5 %. QAQC analyses indicate the assay results to be within acceptable tolerances, and this is reflected in the classification of the resource. PETS & GSM Post 2019
		 QAQC protocols included the insertion of OREAS (2019 - current) and OREAS Mine Match (November 2022) standards, duplicates, and blanks. Samples are submitted to the lab for analysis in batches of 45 samples comprising: 40 x 2m composite core samples, 2 x

Criteria	JORC Code Explanation	Commentary
		standards (6%), 2 x coarse duplicates (6%), and 1 x coarse blank (3%). Analyses of laboratory replicate assays and duplicate assays show a high degree of correlation. • QAQC analyses indicate the assay results to be within acceptable tolerances, and this is reflected in the classification of the resource.
	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections have been verified by alternative senior company personnel.
	The use of twinned holes.	A campaign of twin holes is ongoing in the PETS area for metallurgical sampling (leaching tests). These holes are not used for the estimate.
Verification of	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	PETS Pre 2019 Primary data was collected using a set of standard Excel templates on laptop computers. The information was sent to Jakarta Office, collated, compiled and stored in the central workstation and company server. GSM Pre 2019
sampling and assaying		 The data entry of primary data has been checked and loaded into a sampling spreadsheet. Expedio Pty Ltd independently audited the data management and database practices. PETS & GSM Post 2019
		 Primary assay data is received from the laboratory in soft-copy digital format and hard-copy final certificates. Digital data is stored on a secure SQL server on-site with a backup copy off-site. Hard-copy certificates are stored in the Jakarta office and scanned hard copy certificates are stored on a server.
	Discuss any adjustment to assay data.	There is no adjustment to assay data used in the estimate.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 PETS Pre 2019 Hole collar locations were surveyed by P.T. Global Survey of Indonesia using Total Station (Sokkia), and the expected accuracy is ± 10 mm. Downhole surveys are regularly conducted at 25 m, 75 m and 125 m intervals and from thereon at 50m intervals for deeper holes a Gen4 Proshot (Boart Longyear). GSM Pre 2019 Site preparation is undertaken if required, and location and azimuth re-planned and/or re-surveyed. The planned dip is set using
		clinometers. When the drill rig is in position, the location and azimuth were rechecked using a GPS and/or Total Station before the commencement of drilling. • At the completion of the holes, the collars were surveyed using a Total Station instrument and entered into the drill database. It is assumed the expected accuracy is ± 10mm. • Downhole surveys are regularly conducted using Reflex EX-Shot or a Gen4 Proshot Hire Kit. PETS & GSM Post 2019 • Drill hole collars were surveyed using a Total Station (IM101 from
		 Driff folia Station (INTO From SOKKIA) and the expected accuracy ± 2 mm. Downhole surveys were conducted with a REFLEX EZ TRAC every 25 m - 50 m downhole. The downhole survey tool is calibrated biweekly.
	Specification of the grid system used.	The Grid System used is WGS84 UTM 51 North.
	Quality and adequacy of topographic control.	The topographic surface is surveyed by LIDAR and supplemented by Total Station and DGPS surveys. The LIDAR survey was completed in December 2022, and the expected vertical accuracy is ±0.1 m, and the expected horizontal accuracy is ±0.15 m.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	PETS Pre 2019 The PETS area is drilled to approximately 80 m x 80 m and approximately 35 m x 35 m centre within the better-drilled area. Drillhole location and inclination varied depending on topographical features and ground conditions but generally dipped 60 degrees towards the southeast. GSM Pre 2019
		The diamond drilling drill hole spacing ranges from 25 m by 25 m to 15 m by 25 m in the better-drilled areas. Drillhole location and inclination varied depending on topographical

Criteria	JORC Code Explanation	Commentary
		features and ground conditions.
		PETS & GSM Post 2019
		The drill hole spacing ranges from 100 m x 100 m to approximately 40 m x 40 m within the better-drilled areas focusing on drilling the
		 area between the PETS and GSM drilled areas. Drillhole location and inclination varied depending on topographical
		features and ground conditions. Multiple drill holes were drilled from a single drill pad resulting in surface "fan" drilling.
	Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	 The drill hole spacing within most of the mineralised area is appropriate to define the geological and grade continuity of the mineralised system. The area linking the GSM and PETS is underdrilled and for a small proportion the current spacing is unlikely to be appropriate to define geological and grade continuity, and thus have not been included in the reported MRE. The resource classification considers the different degrees of geological and grade continuity.
	Whether sample compositing has been applied.	 The reported exploration results have been composited (i.e. length weighted composites) with no grade capping applied. Drill holes have been composited (i.e. length weighted) to 4 m for the Mineral Resource estimate.
	Whether the orientation of sampling achieves unbiased sampling of	PETS Pre 2019 The drill holes were oriented perpendicular to the orientation of the
	possible structures and the extent to which this is known, considering the deposit type.	mineralised trend. Structural logging based on an oriented core indicates that the mineralisation controls are largely perpendicular to drill directions. Variographic analysis confirms the principal directions of the mineralisation is perpendicular to the drilling orientation.
		GSM Pre 2019
Orientation of data		Drill spacing is largely dependent on land status and accessible sites. Drill spacing varies from 20 m to 30 m on east-west sections that are nominally spaced at 25m apart. Due to the steep topography several holes have been drilled from a single pad. These holes are drilled at various orientations to achieve the desired drill spacing at the target depth. PETS & GSM Post 2019
in relation to data in relation to geological structure		Sampled drill holes were designed in 3D to intersect mineralisation at a range of orientations to assess and accommodate the potential orientation of mineralisation and structures, while maintaining appropriate spacing between holes. The orientation of samples relative to structural controls is not considered to introduce a sampling bias.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported	PETS Pre 2019
		sampling of the possible structures identified.
		GSM Pre 2019
	if material.	The orientation of sampling is appropriate and achieves unbiased sampling of the possible structures identified. PETS & GSM Post 2019
		No bias based on hole orientation is known to exist.
Sample security	The measures taken to ensure	PETS Pre 2019
- Campio coodiny	sample security.	The chain of custody was managed by One Asia. Samples are stored on-site and delivered by One Asia personnel to the assay laboratory. Whilst in storage, they are kept in a locked core house.
		GSM Pre 2019
		The measures taken to ensure security for samples used for analysis and QAQC include the following:
		 Chain of Custody was documented (historic Table 1) by J Resources and both SGS and Intertek (ITS) laboratories reported on delivery and receipt of sampled material.
		 All samples are transported in plastic wrapping and nailed-shut boxes. The samples remain in the custody of JRN to Gorontalo
		 airport and are then airfreighted to the laboratory. Upon receipt of samples, SGS and ITS confirm each batch of samples has arrived, with its tamper-proof seal intact, at the allocated sample preparation facility. Any damage to or loss of samples within each batch (e.g., total loss,
		spillage or obvious contamination) is reported. A list of the effect sample and nature of the problems was supplied to J Resources.

Criteria	JORC Code Explanation	Commentary
		 As a further check, samples are weighed before dispatch and again on receipt at the laboratory with the weights compared to ensure sample integrity. PETS & GSM Post 2019 All core samples are bagged separately into calico bags and dispatched to the off-site sample preparation facilities operated by Intertek in the nearest town. Sample transport from site to the preparation facilities is done using land transport (dedicated box truck), which is sealed at site using commercial seals provided by Intertek. Sample receipt at preparation facilities is done by Intertek staff. The Marisa and Manado ITS sample preparation facilities are located in dedicated compounds with 24 hour security guards. After sample preparation, 250 g sub-
		samples are securely packed and couriered via air freight to Geoservices Jakarta for analysis.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	PETS Pre 2019
		 A review of the sampling techniques and data was carried out by SRK Consulting as part of the resource estimate conducted in 2014. The database was of sufficient quality to carry out resource estimation.
		GSM Pre 2019
		 Cube Consulting reviewed the standard operating procedures for diamond core sampling, and discussions with the site Geologists confirmed that these were understood and being followed. An audit of the entire J Resources drill hole database conducted by Expedio in January 2018 found no material issues affecting resource estimation.
		PETS & GSM Post 2019
		 Dr François-Bongarçon (Agoratek International) is engaged in conducting regular reviews and audits of sampling, QAQC, site and external laboratories, as well as training and improvement initiatives. He reviewed the sampling protocol for Pani samples in June 2022. RSC conducted a review of the December 2022 and March 2023 MRE processes. No critical issue was identified. All conclusions and recommendations were reviewed and are implemented or being implemented if deemed material.

Section 2. Reporting of Exploration Results

Criteria	KCMI/JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 In 1994, the Government of Indonesia issued a Kuasa Pertambangan ("KP") mining licence, covering an area of one square kilometre (100 hectares), to a local cooperative KUD Dharma Tani Marisa ("KUD"). The KP licence was reissued as an IUP operation and production license (316/13/XI/TAHUN2009) in November 2009, under the 2009 Mining Law. The licence of KUD Dharma Tani was transferred to PT. Puncak Emas Tani Sejahtera (PETS) based on Gorontalo Governor Decree no 351/17/IX/2015 and 30/DPM-ESDM-Trans/Per-IUP-OP/IV/2020. The PETS IUP operation and production is valid to 23rd November 2032 and extendable for another 10 years. Merdeka acquired majority control of PETS in December 2017. The PT GSM CoW is a 5th generation Contract of Work (CoW). The permit was granted initially on a Presidential decree B-188/Pres/7/1994 on 20th July 1994 to the Newcrest subsidiary PT Newcrest Nusa Sulawesi. The CoW initially covered an area of 1,129,598.18 hectares but with subsequent relinquishments is now 14,570 hectares across three blocks, with the Pani Block covering 7,385.71 hectares. Since 2002 the CoW ownership has been held by PT. Gorontalo Sejahtera Mining (PT. GSM) which was acquired by Avocet Mining Plc in 2007 and then J Resources Nusantara 2011. Merdeka acquired ownership of PT GSM in December 2021.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Early work by the Dutch in the 19 th century at Pani included the driving of short adits under the NNE trending Pani Ridge. PT Tropic Endeavour undertook systematic reconnaissance stream sediment geochemistry, follow up soil and rock sampling and regional geological mapping in the early 1970's, outlining three high-grade zones at Pani Ridge. Utah International (who acquired Tropic Endeavour's assets and was in tum purchased by BHP) undertook further sampling and mapping in 1981-1982. BHP drilled 7 holes during this time. Four holes were drilled on Pani Ridge and 3 more on G. Baganite-Nanasi Ridge. BHP retumed in 1984 drove other three adits in an effort to overcome the grade discrepancies and dug a series of costeans parallel to the NE trending mineralised fractures at Pani Ridge. Adits obtained higher grades than adjacent drill holes but still the
		deposit was uneconomic and subsequently closed down again. They returned in 1987, carried out channel sampling, step trenches across the ridge and concluded an NNE strike of mineralisation from the geochemical results rather than geological observations. Extensive systematic surface campaigns were carried out as well within a 3 km radius of Pani Ridge. That campaign included ridge and spur soil auger lines, outcrop and float sampling for Au, Ag and Sb determinations and trenching across ridge tops. In 1990, BHP began to drill 22 diamond holes, all but one oriented in an effort to traverse the assumed NNE strike mineralisation but again failed to clearly determine the mineralisation.
		In 1993 or 1994 a local cooperative, KUD Dharma Tani, acquired a small-scale mining permit of 1 square kilometre over Pani Ridge and Gunung Baganite. The KUD optioned its rights to PT Pertiwi in 1996, who then optioned the project to Paramount Ventures, which drilled 29 holes in the area to confirm the BHP results and at the same time expand potential resources to include Gunung Baganite and Masina.
		In August 2009, One Asia acquired an option over the Pani property from PT Prima Mineralindo Nusantara. One Asia drilled a total of 137 drill holes for 26,017.5 m.
		PT Merdeka acquired the PETS IUP in 2018 and has drilled a total of 100 holes for 31,390.15 m.
		Newcrest was granted a 5th generation Contract of Work (CoW) through its subsidiary PT. Newcrest Nusa Sulawesi (NNS) in 1994 over the Pani project area but excluding the KUD block. NNS flew Heli-borne magnetic-radiometric as well as completing regional stream sediment, pan concentrate, BLEG, ridge-spur soil; rock outcrop and float surveys. Prospects were delineated through 28 diamond scout holes drilled at Kolokoa, Lone Pine, Masina, Wadi, Tembaga South, Tembaga Central, Totimbuwale South, Jahiya Besar, Ilota, Nanasi Ridge and Langge. The total drilling was 4,437.5m. Newcrest dropped the project to focus on Halmahera around the time of the Asian financial crisis.
		In 2002, Havilah Pty. Ltd and Arafura Rejeki Alam acquired the whole interests of PT. NNS and renamed the property to PT. Gorontalo Sejahtera Mining (PT. GSM). After mandatory relinquishment, PT. GSM CoW retained four (4) separated blocks: Pani and Totopo in Gorontalo

Criteria	KCMI/JORC Code explanation	Commentary
		Province; Bulagidun partly in Central Sulawesi and Bolangitang block in North Sulawesi. No activities were recorded to 2005. Avocet Mining Plc acquired PT GSM in 2007. Work was only done in the Totopo Block which was then relinquished in 2010, whilst Pani had no recorded work other than field visits. PT. J Resources Nusantara (JRN) acquired PT GSM from Avocet in 2011 and drilled a total of 684 holes for 106,660.7 m. Merdeka acquired ownership of PT GSM in December 2021.
Geology	Deposit type, geological setting and style of mineralisation.	 Low sulphidation epithermal gold deposit Middle to Late Cenozoic magmatic arc Gold mineralisation is associated with open space oxide - sulphide fracture fillings, stockwork veins, and narrow mosaic hydrothermal breccia within dominantly silica altered host rock.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Exploration results are not being reported. The report is for a Mineral Resource Estimate.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Exploration results are not being reported. The report is for a Mineral Resource Estimate.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	 Refer to previous releases. Holes reported are drilled at various angles to assess and accommodate mineralised geometry. Some holes are drilled sub parallel to the long axis of mineralisation.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to previous releases.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Exploration results are not being reported. The report is for a Mineral Resource Estimate.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical	All historical drill intercepts if shown have been reported by Merdeka Copper Gold.

Criteria	KCMI/JORC Code explanation	Commentary
	survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Works to follow-up on reported results are ongoing with up to 70,000m of additional drilling planned in 2023. Other recommendations are: Field mapping to map regional structures and mineralisation, Trenching whenever possible to increase the understanding of the mineralisation, Geological mapping of new road cuts.

Section 3. Estimation and Reporting of Mineral Resources

Criteria	JORC Code Explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	Core logging is completed at the site core yard using project-specific logging codes directly into a Toughbook. Data is then transferred to the server and loaded directly into the site database. Assay results are currently received from the laboratory in digital format. Once data is finalised it is transferred to a Geobank database.
	Community purposes.	Geological databases are managed by a dedicated geological database team in the Mineral Resource Group based in the Jakarta head office, who conduct regular reviews, spot checks and training with site database personnel.
		Logging and database management for historic information Pre 2018 is outlined in Section 1.
	Data validation procedures used.	An Access database with all relevant data was extracted from the Company SQL Geobank database on the 14th of June 2023.
		Separate Datamine files, for collars, downhole surveys, assays, alteration, density, lithology, oxidation and veining were exported from the Access database and combined in Datamine to make a single drill hole file.
		The data was imported into Datamine and underwent various validation checks including:
		Checking for duplicate drill hole names and duplicate coordinates in the collar table.
		Checking drill hole names are consistent.
		Checking for missing drill holes in the collar, survey, assay, and other tables based on drill hole names.
		Checking for survey inconsistencies, including dips and azimuths <0°, dips >90°, azimuths >360° and negative depth values.
		Checking for inconsistencies in the "From" and "To" fields of the assay and all other tables. The inconsistency checks included identifying negative values, overlapping intervals, duplicate intervals, gaps and intervals where the "From" value is greater than "To" value.
		Ranking of historical and current assay method were checked carefully.
		Elevation of each collar was also validated. Deviations from Lidar topography were accepted up to 10m due to the irregular and steep topography.
		Additional checks were conducted by the companies Database manager which included:
		All of the J Resource assay information was re-imported into the database.
		Assays used for the estimation were re-checked specifically.
		Random manual checks were performed after data import.
		All data was clean and able to be imported and de-surveyed in Datamine software. Visual validation by section for obvious trace errors.
Site Visits	Comment on any site visits undertaken by the Competent	The Competent Person completed multiple site visits in 2023. During the site visit, the following was completed:
	Person and the outcome of those visits.	Inspection of diamond core drilling, logging and sampling.
	If no site visits have been undertaken indicate why this is the case.	Inspection of surface activity.
	mulcate why uns is the case.	Inspection of core yard facilities (both the old facility and the newly established facility).
		Numerous discussions were held with geologists to understand the geology of the deposit and drilling/sampling processes.
		The core shed was clean and well-organised, and related procedures were being followed. Data collection systems were found to be consistent with industry good practice. Furthermore, geological controls to the mineralisation were sufficiently understood to enable a Mineral Resource to be reported in accordance with the JORC Code.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	A Geological Matrix Analysis (GMA) has confirmed previously reported observations that mineralisation is a low sulphidation epithermal mineralisation. Gold Mineralisation is associated with quartz ± pyrite ±

Criteria	JORC Code Explanation	Commentary
		goethite veins, silica alteration and goethite alteration and the tenor of the gold mineralisation increases as the silica alteration and frequency of veining or veinlets increase.
		Silver domains were separated from gold domains. Silver mineralisation has no correlation, uncovered to date, with any geological parameters. It is assumed that silver deposited at lower temperature than gold in the periphery of the gold mineralisation.
	Nature of the data used and of any assumptions made.	No material assumptions have been made which may materially affect the MRE reported herein.
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	Alternative interpretations are not likely to materially impact the global MRE.
	GGII/IGIG/I.	The current drilling programs are confirming the boundary location within acceptable tolerance based on the classification of the MRE. The geometry and understanding of the mineralisation will increase as the spatial drill hole density increases.
	The use of geology in guiding and controlling Mineral Resource estimation.	The final estimation domains were based on a Geological Matrix Analysis (GMA) conducted in 2020, 2022 and updated in June 2023 (using data extracted on 14/06/2023).
		Mineralisation is associated with quartz ± pyrite veins, silica alteration and goethite alteration, and the tenor of the gold mineralisation increases as the silica alteration and frequency of veining or veinlets increases. The selection criteria for the estimation domains are outlined below:
		Mineralised Waste Domain (1000): Internal mineralised waste domain delineating zones of <0.1 g/t Au and no veining.
		Mineralised Domain (3000): ≥ 1 logged vein per metre or a gold threshold of ≥ 0.1 g/t based on economic compositing routine.
		Higher-Grade Mineralised Domain (5000): \geq 5 logged veins per metre or a gold threshold at \geq 0.5 g/t based on economic compositing routine, and also based on occurrences of crackle – mosaic hydrothermal breccias.
		The domains illustrate the strong correlation between the spatial density of quartz veining and the gold grade.
		The selection criteria for silver domains are:
		Low grade silver ≥ 0.6 ppm
		High grade silver ≥2.0 ppm
		The estimation domains were interpreted initially in Leapfrog and then on 20 m and 10 m spaced east-west sections in Datamine. The mineralised waste encompasses the low grade, which in turn encompasses the higher-grade domain.
		To ensure Exploratory Data Analysis (EDA) and variographic analysis are appropriate, Pani was separated into four "sub-domains" or regions. The sub-domains are:
		GSM Northern (~>62,150 mN and < 388,250 mE)
		GSM Southem (~<62,150 mN and < 388,250 mE)
		PETs Western (~ >388,250 mE and ~< 388,450 mE)
		PETS Eastern domains (~>388,450 mE)
	The factors affecting continuity both of grade and geology.	The gold mineralisation is associated with the intrusive rhyodacite dome and infill drilling may result in changes to the mineralisation domains.
		The degree of post mineralisation structural influence may increase or decrease as the drill hole spacing increases.
		Variographic analysis on gold domain indicates that the principal plane defined in the variographic analysis for GSM South, PETS West, and PETS East dipped moderately towards the west. In contrast, GSM North dipped moderately towards the southwest.
		Silver was estimated inside domains by applying omni directional variography.
		At this stage, the factors controlling gold grade continuity are not well understood. There is a clear association of mineralisation with vein

Criteria JO	ORC Code Explanation	Commentary
		stockwork, but the stockwork geometry and orientations require further analysis.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	The mineralisation at Pani sits between the surface and approximately 500 m below the surface. It is roughly circular in plan with a diameter of approximately 1,000 m and is contained within an intrusive rhyodacite dome complex ('Baganite Dome').
Estimation and modelling technique		The MRE includes Au <i>g/t</i> , Ag <i>g/t</i> , Bulk Density and S %. S % is not reported but was estimated to validate the location of the oxidation boundaries. Drill hole data was selected within mineralised domains and composited to 4 m downhole intervals in Datamine software. The composited data was imported into Isatis and Supervisor software for statistical and geostatistical analysis. The analysis showed for Au, Ag and bulk density, different planes of maximum continuity throughout the Pani mineralised system and the domains were sub-domained into the GSM northern (~52,150 mM and <388,250 mE), PETS Western (~>388,250 mE and ~<388,450 mE). Hard boundaries were used for the primary domains (1000, 3000 and 5000 for Au and Sulphur and 700, 730 and 750 for Ag), and soft boundaries were used to estimate within the subdomains. To ensure the Au grade continuity was honoured, the variograms principal plane of maximum continuity for each sub-domain was defined by combining the primary estimation domains (i.e. 1000, 3000, 5000). Variography was performed on data transformed to normal scores, and the variogram models were back-transformed to original units. The Gaussian anamorphosis used for the normal scores transform was subsequently used for the discrete Gaussian change of support model required for Uniform Conditioning. The variogram models had an interpreted nugget effect ranging from 23 % to 62 %, and the direction of maximum continuity ranged from 175 m to 360 m. Omni directional gaussian variograms were modelled for Ag, S and bulk density. The modelled variograms were back transformed on used for a very local estimate, and distance threshold capping is used beyond this local distance (i.e. 20 m). The threshold capping is used beyond this local distance (i.e. 20 m). The threshold capping is used beyond this local distance (i.e. 20 m). The threshold capping is used beyond this local distance (i.e. 20 m). The threshold capping is used beyond this local distance (i.e. 20 m). The threshold capping is used beyond this l

Criteria	JORC Code Explanation	Commentary
		5000) for Au. The localisation step (LUC) was run for these domains and the resulting SMU was exported to Datamine.
		Wireframing was completed using Leapfrog and Datamine RM Studio software, while estimation was completed in Isatis 2018.5. Variography and data analysis was completed using Supervisor v8.14 and Isatis 2018.5.
		The estimates have been validated by comparing composite data with block model grades for all domains statistically and using swath plots. The visual comparison was also undertaken onscreen by comparing block grades and composites. The estimate validated well, given the geological and grade continuity.
	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	Comparison of the Au MRE with an internal estimate conducted in March 2023 at \geq 0.2, \geq 0.3, \geq 0.4, \geq 0.5 and \geq 0.6 gram per tonne thresholds shows similar results with differences in both tonnes and grades less or equal to +2% and -1%, respectively using the same March RPEEE shell. The difference has been attributed to the additional drilling (153 holes), the 2022 resampling campaign and the resultant changes to the estimation domain boundaries.
		There is no mining production to date to make a comparison.
	The assumptions made regarding recovery of by-products.	No assumptions have been made regarding the recovery of by-products.
	Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation).	Total sulphur (S) was estimated using Ordinary Kriging, and the estimation panel size depended on the available information. The estimate was performed within the sub-domains defined for the Au estimate. Variograms and search neighbourhood were omni-directional.
	,	No deleterious elements have been estimated in this MRE.
	 In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. 	Quantitative kriging neighbourhood analysis was performed to optimise the block dimensions. The block size was limited to half the drill hole spacing or 40 m (X) × 40 m (Y) × 7.5 m (Z) and 20 m (X) × 20 m (Y) × 7.5 m (Z) within the well-drilled GSM area. A sub-blocking dimension of 5 m (X) × 5 m (Y) × 3.75 m (Z) was used to honour the interpreted volume for both the waste and mineralised parent block dimensions.
	 Any assumptions behind modelling of selective mining units. 	The selective mining units used in the LUC estimate was 5 m (X) \times 5 m (Y) \times 7.5 m (Z) and is assumed to be appropriate for the Pani mineralisation and proposed mining and milling rates.
	 Any assumptions about correlation between variables. 	All variables are treated in the univariate sense for estimation.
	Description of how the geological interpretation was used to control the	The construction of the domains was based on geological and grade relationships, as outlined previously in this table.
	resource estimates.	The block model is assigned unique domain codes corresponding to the mineralisation wireframes. Domains were estimated using composite with a corresponding domain code (1000, 3000, 5000, 700, 730, 750).
		All domain boundaries were treated as hard boundaries and boundaries between sub-domain were treated as soft boundaries.
	Discussion of basis for using or not using grade cutting or capping.	The panel estimates used capping and 'distance limited capping' techniques, where uncapped or higher capped composites are used for a very local estimate, and distance capping is used beyond this local distance (i.e. 20 m). These thresholds were based on inflections and discontinuities in the histograms, log-probability plots, and metal quantities above thresholds.
		The capping thresholds for Au ranged from 1.5 g/t to 32.5 g/t globally and the distance capping ranged from 1.1 to 18.5 g/t. For Ag the global caps ranged from 12 g/t to 44 g/t, and the distance capping ranged from 5 g/t to 26 g/t. In some domains no capping was deemed necessary. No capping was applied to total sulphur.

Criteria	JORC Code Explanation	Commentary
	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	The process of validation includes standard model validation using visual and numerical methods: Statistically comparing the estimated block grades against the average capped composites, average capped declustered (40 m x 40 m x 20 m) and moving window average capped composites were completed for all domains. To exclude the impact of grade extrapolation, additional restrictions were placed on the analysis whereby only those blocks with a composite within were reported. This analysis was further expanded to include blocks directly informed by samples within, plus a one-block buffer. Swath plots of the estimated block grades and composite mean grades are generated by eastings, northings and elevations and reviewed to ensure acceptable correlation, The block model estimates are checked visually against the input composite/drill hole data. Given the drill hole spacing and the estimation domains spatial characteristics, stationarity and domain construction, the panel estimates were deemed acceptable.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnages are estimated on a dry basis.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The Mineral Resource is reported above a Au cut-off grade of 0.2 grams per tonne and above a RPEEE shell at US\$2,150. The current studies suggest a cut-off grade of 0.25 g/t Au for the Heap Leach processing route and a cut-off grade of 0.36 g/t Au for the milling/CIL processing route.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	The Pani Gold Project is assumed to be mineable using open pit methods. For the proposed surface operations, the geometry, grade, indicative geotechnical properties, and size of the resource suggest an amenability to open pit mining method based on the defined SMU with no internal selectivity.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	Initial studies have shown that the Pani ore can be processed through a conventional crush/grind/CIL circuit at site to produce a gold dore. Additional metallurgical testing is underway to confirm previous work on gold recovery by a Heap Leach processing route.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the	It is assumed that there will be no significant environmental impediments to further developing the project.

Criteria	JORC Code Explanation	Commentary
Official	determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	
	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	Bulk density determinations were routinely collected every 10 m down hole and based on a sample length of 0.1 m. The bulk density measurements are considered representative of the in-situ bulk density and are evenly distributed throughout the mineralised domains.
Bulk density	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit.	Bulk density determinations were routinely collected from diamond core at selected intervals throughout the entire drill hole, with sample lengths typically 0.1 metres. Measurements were calculated using the water immersion or Archimedes method. Samples were first dried, and the density was calculated by measuring the weight in air, the weight in water and then calculated by the weight in air divided by the weight in water.
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials	Density was estimated using Ordinary Kriging (OK) with a three-pass omni-directional search strategy. Density domains were based on alteration domains. Extreme density values were capped and panels that were not estimated due to being too distant from sufficient bulk density data to meet minimum estimation criteria, were assigned the median density for the corresponding domain.
		A global capping value of 3 was applied to the silica clay alteration domains.
	The basis for the classification of the Mineral Resources into varying confidence categories.	The Mineral Resource has been classified following due consideration of all criteria contained in Section 1, Section 2 and Section 3 of JORC 2012 Table 1.
		The classification of the Mineral Resource considered the quantity and quality of the composites, the quality and quantity of density data, drill hole spacing, and the quality of the block grade estimates. The following approach was adopted when classifying the Mineral Resources:
		The drill hole spacing within each domain was separately reviewed.
		The block model was coloured by slope of regression ('SOR') for Au, which was considered to give the clearest and most constrained information on the quality of the estimate.
		The sample spacing was then compared to the SOR for Au. SOR values of >0.5 generally correlated with areas drilled out on a 40 m x 40 m pattern or denser.
Classification		Strings were digitised around areas with a 40 m x 40 m drill hole spacing and a SOR > 0.5
		Strings were digitised to define the classified volumes based on:
		Indicated Mineral Resource: A nominal drill spacing of 40 mN x 40 mE, a kriging slope of regression of >0.5, above the constraining economic pit shell at US\$2,150/oz Au and within the mineralised estimation domains (3000 and 5000).
		Inferred Mineral Resource: Material within the mineralised estimation domains, above the constraining economic pit shell at US\$2,150/oz Au and regionals with adequate drill hole spacing.
	Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology	All available data was assessed and the Competent Person's relative confidence in the data was used to assist in the classification of the Mineral Resource.

Criteria	JORC Code Explanation	Commentary
	and metal values, quality, quantity and distribution of the data).	
	Whether the result appropriately reflects the Competent Person's view of the deposit.	The current classification assignment appropriately reflects the Competent Person's view of the deposit.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	Previous MREs (2022 and March 2023) have been audited by an independent third party (RSC Mining and Mineral Exploration). This MRE has been subjected to Merdeka's internal peer review processes.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	The Mineral Resource accuracy is communicated through the classification assigned to this Mineral Resource. The MRE has been classified in accordance with the Kode KCMI (2017) and JORC Code (2012 Edition) using a qualitative approach.
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	The Mineral Resource statement relates to a global tonnage and grade estimate. Grade estimates have been made for each block in the block model.

APPENDIX 2

Material Information Summary

Regional Geology

The Pani Project is located within the Tertiary magmatic arc of North Sulawesi. This magmatic arc consists of pre-Tertiary basement metamorphics and granitic intrusions unconformably overlain by late Tertiary volcanic and related sedimentary rocks. These consist of Oligo-Miocene submarine volcanics and sediments and late Miocene-Pliocene subaerial volcanics. Plio-Pleistocene rhyodacitic to andesitic volcanics punctuate this stratigraphic package forming caldera dome complexes, dyke swarms and diatremes.

Caira and Pearson (1999) showed that the North Sulawesi arc hosts early Miocene mineralisation developed under a regional dextral wrench-tectonic regime and Pliocene mineralisation developed under a sinistral wrench-tectonic regime. NNW arc-normal and ESE arc-parallel faults, developed in the Miocene, dominates the structural fabric. The intersections of these major fault sets are favoured sites for low-grade early-Miocene porphyry Cu-Au mineralisation. Sinistral reactivation of the major Miocene structures in the late-Miocene and Pliocene led to rifting and ENE-directed dilation. Plio-Pleistocene intrusions and related mineralisation exploit these dilatant settings. The later sinistral faulting is a result of an EW- (or WNE-ESE) oriented stress due to the initiation of subduction along the west margin of the Maluku Sea.

Local Geology and Mineralisation

The Pani Gold Project licence areas overlie the Plio-Pleistocene, rhyodacitic Pani Volcanic Complex (PVC) that sits within a large circular feature interpreted to be a caldera of 25 km in diameter. Basement rocks compose the Eocene Tinombo Formation oceanic basalts to the north and younger Miocene granodiorite batholiths to the south and underneath the PVC. Much of the PVC is made of a series of flow-dome complexes and un-subdivided pyroclastic rocks. Stratigraphic correlation within the PVC is problematic due to the repetition of pyroclastic rocks, lava flow-dome complexes of the very same composition. There are several dome complexes (Ilota, Paceda, Tomula) recognised within the PVC but only the Baganite Dome hosts major, bulk epithermal gold mineralisation. The Baganite Dome consists of the following main lithostratigraphic units.

- Lapilli tuff
- Baganite Dome, massive porphyritic rhyodacite
- Baganite Dome, flow-banded rhyodacite
- Baganite Dome, -related rhyodacite breccias
- Pani Volcanic Complex, rhyodacitic host-rocks to the Baganite Dome

Local structures identified from field mapping are dominated by fractures, normal and strike slip faults with dominant orientations of ENE-WSW and NNE-SSW to N-S. These structures are moderate to steeply dipping to the west and appear to be a control on the mineralisation.

Alteration zones at Pani are differentiated based on descriptive mineralogy assemblages. There are 5 types recognised: undefined alteration/surface weathered (UA), clay \pm chlorite (CYCH), clay \pm silica (CYSI), silica \pm chlorite (SICH) and silica \pm clay (SICY). Mineralisation is associated with silica dominated alteration.

Gold mineralisation is associated with open space oxide - sulphide fracture fillings, stockwork veins, and narrow mosaic hydrothermal breccia within the dominantly silica altered host rock.

Geological Interpretation

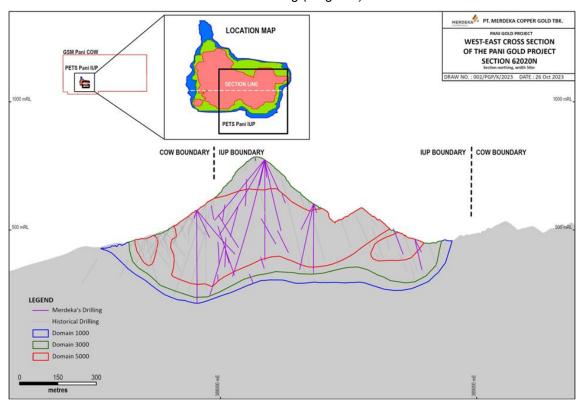
Diamond drill hole data drilled by Merdeka and previous owners formed the basis for interpreting the mineralisation.

A geological matrix analysis (GMA) was conducted to determine the geological characteristics associated with the gold mineralisation at Pani. This study demonstrated mineralisation is associated with quartz ± pyrite ± goethite veins, and silica alteration. Multivariate analysis, in turn, demonstrated an association between gold and silver mineralisation that is typical of low sulphidation systems.

Economic composites and log-probability plots (performed with Leapfrog software) were used to investigate different grade populations. The economic compositing was based on various thresholds, 15 metres of total internal waste and less than 7.5 metres of consecutive waste corresponding to the proposed selective mining units.

The resultant analysis defined the following selection criteria used to interpret mineralised domains:

- Mineralised Zone (3000): ≥ 1 logged vein per metre or a gold threshold of ≥ 0.1 g/t based on economic compositing routine.
- Higher-Grade Mineralised Zone (5000): ≥ 5 logged veins per metre or a gold threshold at ≥ 0.5 g/t based on economic compositing routine.


Due to the scale of the mineralised system, an internal waste zone (1000) was defined to delineate zones of contiguous mineralised waste (i.e. <0.1 g/t Au and no logged veins).

The drill holes were flagged with the selection criteria and modelled within Leapfrog Mining software. The resultant implicit model was imported into Datamine Mining software, and the final domains were based on 10-metre east-west sections and modelled explicitly.

The resultant estimation domains are defined in Figure 11 in cross section and in Figure 12 in plan view. The mineralisation is approximately circular in plan view, with a diameter of ~1 km, with a current vertical extent of ~0.5 km, and is contained within an intrusive rhyodacite dome complex ('Baganite Dome').

Leapfrog Mining software was used to model the lithology, alteration and oxidation characteristics of the mineralised system.

Figure 11: Cross section at 62,020m Northing showing the mineralised domains and the historical drilling (grey) and recent drilling (magenta)

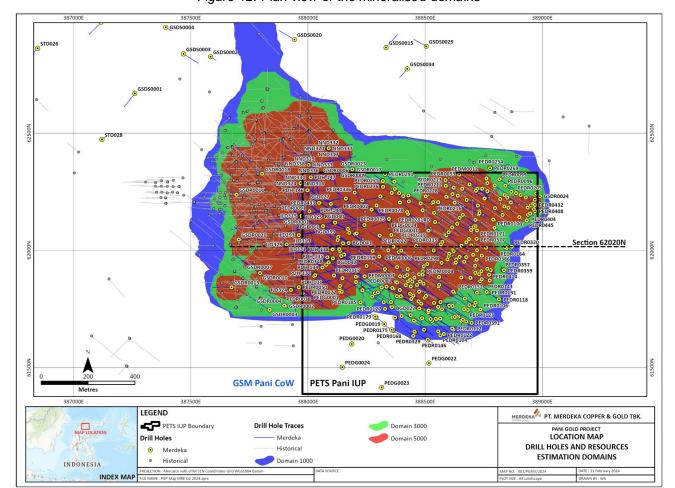


Figure 12: Plan view of the mineralised domains

Sampling and Sub-Sampling Techniques

Diamond drill core was cut with a diamond core saw on site, and half core composites were collected at up to two metre intervals. Intervals varied depending on the drilling campaign (Refer JORC Table 1) and the maximum sampling interval did not exceed two metres. Two metre samples are appropriate for the broad vein hosted (i.e. stockwork) low sulphidation epithermal related mineralisation.

The recent Merdeka samples are weighed, dried at 105° celsius and weighed. The entire sample was pre-crushed to 6 mm with a Terminator Jaw crusher and then crushed to P95% -2 mm in a Boyd Crusher with an integrated rotary splitter. A 1.5kg split of this material was pulverised to P95% 75um. A 250g pulp was transported directly to Intertek Jakarta laboratory for analysis. Sample preparation varied slightly depending on the drilling campaign, refer to JORC Table 1 for full details.

Drilling Techniques

All the drilling data used in the MRE have been collected using PQ, HQ and NQ triple tube diamond drill. The final data set contained upon of 1,289 drill holes totalling 235,543 metres. The drill holes consisted of 484 drill holes for 104,682.8 metres drilled by Merdeka and historical drilling consisted of 805 holes for 130,860.2 metres drilled by J Resources Nusantara and One Asia Resources on the GSM and PETS licences, respectively.

Sample Analysis Method

The exploration drill samples are analysed for gold using 50 g fire assay. Multielement analysis was conducted using 2, 3, or 4 acid digestion methods with ICP finish. No adjustments or calibrations were made to any assay data used in reporting. Analysis varied slightly depending on the drilling campaign, refer to JORC Table 1 for full details.

Classification

The classification of the Mineral Resource used three main criteria:

- Confidence in the geological continuity
- Confidence of the gold estimation
- Reasonable prospect for eventual economic extraction

In summary, the more quantitative criteria relating to these guidelines include data density and the kriging search pass used, as follows:

The Indicated Mineral Resource has a nominal drill spacing of 40 mN x 40 mE, a kriging slope of regression of >0.5 for the gold variable, above the constraining US\$2,150/oz economic pit shell and within the mineralised estimation domains (3000 and 5000).

The Inferred Mineral Resource occurs within the mineralised estimation domains and above the constraining economic pit shell at USD2,150 (exclusive of Indicated Resource).

The constraining pit shell used for the Reasonable Prospect of Eventual Economic Extraction is based on an optimisation run on inferred and indicated resource at US\$2,150/oz, with mining costs varying with depth, but averaging US\$1.92/t. Overall processing recovery was assumed to be 93% (which is supported by metallurgical test work), with a processing cost of US\$16.09 per tonne. Wall angles used are variable with an overall average of 40°.

Estimation Methodology

Gold was estimated by the non-linear method Localised Uniform Conditioning using Isatis software for the mineralised domains (3000 and 5000) and Ordinary Kriging for the mineralised waste domain (1000). Silver and density were estimated by Ordinary Kriging within interpreted mineralisation domains. The model construction was performed with Datamine.

The estimation process followed:

Drill hole data was selected within mineralised domains and composited to 4 metre downhole intervals in Datamine software.

The composited data was imported into Isatis and Supervisor software for statistical and geostatistical analysis. The analysis showed different planes of maximum continuity throughout the Pani mineralised system, and the domains were sub-domained in the GSM Northern (~>62,150 mN and < 388,250 mE), GSM Southern (~<62,150 mN and < 388,250 mE), PETS Western (~ >388,250 mE and ~< 388,450 mE) and PETS Eastern domains (~>388,450 mE). Hard boundaries were used for the primary domains (1000, 3000 and 5000 for gold and 700, 730 and 750 for silver) and soft boundaries were used to estimate within the subdomains.

To ensure the Au grade continuity was honoured, the Au variogram principal direction of each sub-domain was defined by combining the primary estimation domains. Variography was performed on data transformed to normal scores, and the variogram models were back-transformed to original units. The Gaussian anamorphosis used for the normal scores transform was also subsequently used for the discrete Gaussian change of support model required for Uniform Conditioning. The Au variogram models had interpreted nuggets ranging from 24% to 55% of the data variance and ranges of the principal direction varied from 270 to 395 metres. The Ag variogram models had interpreted nuggets ranging from 10% to 56% of the data variance and ranges of the principal direction varied from 250 to 320 metres. The Ag variograms were modelled as omni-directional variograms.

The panel estimates used capping and 'distance limited threshold' techniques, where uncapped or higher capped composites are used for a very local estimate, and capping (threshold) is used beyond this local distance. The distance applied was limited to 20 m and 40 m. These thresholds were based on inflections and discontinuities in the histograms, log probability plots, and metal quantities above thresholds. The capping thresholds are outlined in the tables below

Au Global and Distance Capping Parameters								
Domain	Global Capping (g/t)	Distance (m)	Distance Capping (g/t)					
1000_1	1.5	20	1.35					
1000_2	2	-	-					
1000_3	-	20	0.25					
1000_4	2	20	1.15					
3000_1	8	20	6					
3000_2	18.2	20	7.2					
3000_3	3	20	1.7					
3000_4	7	-	-					
5000_1	25.5	20	17.5					
5000_2	32.5	20	18.5					
5000_3	9.6	20	5.5					
5000_4	25	20	10.5					

Ag Global and Distance Capping Parameters									
Domain	Global Capping (g/t)	Distance (m)	Distance Capping (g/t)						
700_12	25	20	14						
700_34	12	20	8.4						
730_12	26.5	20	16.6						
730_34	17.5	20	5						
750_12	30	20	18.5						
750_34	44	20	26						

Kriging neighbourhood analysis was conducted to optimise the search neighbourhoods. A minimum of 8 to 10 and a maximum of 16 to 24 (4 m composite) samples per panel estimate were used for the first pass estimate. The minimum number of samples was reduced, and the maximum number of samples increased for the second pass searches. The search ellipse radius was based on the variogram ranges and was orientated parallel to the principal direction of the corresponding variogram.

The block size was limited to half the drill hole spacing or 40 m (X) × 40 m (Y) × 7.5 m (Z) and 20 m (X) × 20 m (Y) × 7.5 m (Z) within the well-drilled GSM and PETS areas. A sub-blocking dimension of 2.5 m (X) × 2.5 m (Y) × 3.75 m (Z) was used to honour the interpreted volume for both the waste and mineralised parent block dimensions.

The UC process applies a change of support correction (discrete Gaussian model) based on the composite sample distribution and variogram model, conditioned to the Panel grade estimate, to predict the likely grade tonnage distribution at the SMU selectivity (5 m (X) \times 5 m (Y) \times 7.5 m (Z)). UC was performed within the mineralised domains (3000 and 5000) only. Information effect correction was implemented as part of the change of support calculation. The localisation step (LUC) was run for these domains and the resulting SMU was exported to Datamine.

Density Estimation

Bulk density data was gathered from recent diamond core using the water immersion technique, and a total of 28,617 measurements were used in the estimate. The alteration domains were used for the density domaining, and all boundaries were treated as hard boundaries. Capping for these domains are outlined below.

Domain	Capping	Distance	Distance Capping
300	Nil	Nil	Nil
310	Nil	Nil	Nil
320	Nil	Nil	Nil
330	Nil	Nil	Nil
340	3	Nil	Nil

Density was estimated using OK with omni-directional modelled variograms and estimation parameters optimised per domain. Panels that were not estimated, due to being too distant from sufficient bulk density data to meet minimum estimation criteria, were assigned median density from the corresponding domain.

Reporting Cut-off Grade

The Mineral Resource was estimated at various cut-off grades, and the cut-off grade of 0.2 g/t Au was selected for reporting under as the Pani Project will be mined using open pit methods.

Mining and Metallurgical Factors

It is assumed that the Pani Project will be mined using open pit techniques.

The metallurgical test work program for gravity / carbon-in-leach processing continues to define high gold recoveries (plus 93%), with a significant gravity component to be included optimising the proposed processing flow sheet. Tailings storage options have been selected, with geotechnical drilling of these tailings storage, pit shells and infrastructure sites advancing.

An additional metallurgical test work program on an oxidised ore zone of the PETS deposit is ongoing, to confirm previous work on gold recovery by a gravity/Heap Leach processing route, as a low-CAPEX starter project.

RPEEE Parameters (Modifying Factors)

The Reasonable Prospect of Eventual Economic Extraction modifying factors is outlined below:

Gold price of US\$2,150/oz. Mining costs varying with depth but averaging US\$1.92/t. Wall angles are based on the wall orientation, rock type and weathering state, averaging 40°. Overall processing recovery was assumed to be 93%, with a processing cost of US\$16.09 per tonne

APPENDIX 3

Drill Hole Information

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
BGD001	388172.7	62031.085	773.66	400	119.39	-75.89
BGD002	388052.5	62203.187	717.957	412.9	349	-70
BGD003	388172.956	62030.706	773.589	403	124	-60
BGD004	388052.473	62203.076	717.969	602	349	-60
BGD005	388173.705	62032.272	773.449	354	169	-60
BGD006	388032.402	61899.797	719.403	401.4	124	-76
BGD007	388173.801	62031.897	773.474	53	169	-50
BGD008	388173.547	62033.049	773.471	390.9	0	-90
BGD009	388052.408	62203.56	717.95	451.5	349	-50
BGD010	388032.792	61899.517	719.504	434.5	124	-60
BGD011	388113.498	62119.629	757.563	514.9	259	-70
BGD012	388108.795	61965.312	761.539	420.3	79	-70
BGD013	388173.014	62030.607	773.423	472.4	259	-75
BGD014	388053.073	62202.86	718.098	407	304	-80
BGD015	388030.237	61898.378	719.353	353.2	169	-70
BGD016	388113.249	62119.589	757.643	330.5	259	-55
BGD017	388108.426	61965.251	761.62	440	0	-90
BGD018	388053.12	62202.857	718.057	430	304	-60
BGD019	388172.937	62030.587	773.723	502.2	259	-60
BGD020	388112.982	62119.548	757.643	266.1	259	-45
BGD021	388030.279	61897.866	719.434	300	169	-60
BGD022	388474.595	61753.955	645.871	315.4	124	-75
BGD023	388108.902	61963.944	761.72	395.8	124	-75
BGD024	388112.892	62119.796	757.888	389.3	304	-70
BGD025	388030.631	61894.633	719.206	502.4	304	-75
BGD026	388240.061	62107.132	712.175	289.7	259	-70
BGD027	388049.955	62204.263	717.919	413	124	-85
BGD028	388475.451	61753.36	645.947	310.4	124	-60
BGD029	388172.613	62030.581	773.846	479	259	-50
BGD030	388328.87	61919.861	667.78	360.8	304	-65
BGD031	388109.19	61963.641	760.361	373.7	124	-60
BGD032	388474.77	61753.775	645.879	360.1	0	-90
BGD033	388112.533	62120.05	757.954	290	304	-55
BGD034	388050.03	62203.457	718.163	254.8	79	-70
BGD035	388329.544	61919.265	667.776	260.4	259	-70
BGD036	388033.031	61895.845	719.468	392	349	-70
BGD037	388238.888	62106.878	712.234	300.3	259	-45
BGD038	388474.826	61752.173	645.791	175	79	-60
BGD039	388064.299	62103.223	730.623	358	79	-70
BGD040	388112.813	62120.866	757.97	106.6	349	-45
BGD041	388173.938	62031.725	773.727	484.6	304	-75
BGD042	388109.734	61963.287	761.687	355.3	124	-45
BGD043	388474.877	61752.496	645.926	243	79	-50

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
BGD044	388329.274	61919.151	667.873	188.6	259	-60
BGD045	388112.855	62120.015	757.941	411.5	0	-90
BGD046	388050.249	62203.513	718.29	175	79	-60
BGD047	388032.893	61896.617	719.506	250	349	-50
BGD048	388475.605	61752.037	645.899	355.5	304	-75
BGD049	388328.803	61919.091	667.867	106.4	259	-50
BGD050	388033.164	61895.474	719.307	400.6	0	-90
BGD051	388050.619	62203.566	718.217	190.8	79	-45
BGD052	388239.833	62107.542	712.07	400	304	-75
BGD053	388328.211	61921.058	667.701	224.9	169	-70
BGD054	388475.184	61752.338	645.894	262.1	304	-60
BGD055	388049.6	62203.847	718.011	380.2	124	-70
BGD056	388387.453	61992.736	598.336	312.5	120	-60
BGD057	388111.076	62119.311	757.801	465.6	79	-60
BGD058	388107.813	61962.596	761.34	254.8	169	-60
BGD059	388032.61	61897.282	719.621	351.5	79	-70
BGD060	388328.215	61920.897	667.721	179.3	169	-60
BGD061	388063.912	62104.091	730.562	400.3	0	-90
BGD062	388492.055	61909.217	649.705	346.2	303	-88
BGD063	388107.98	61961.849	761.514	172.5	169	-45
BMD001	388784.048	62486.555	456.577	213.25	135	-60
BMD002	388784.126	62486.964	456.602	205.65	300	-65
BMD003	388890.982	62401.182	393.947	160	90	-50
BMD004	388707.457	62375.448	455.167	200	90	-60
BMD005	388758.499	62405.188	464.986	200	90	-60
BMD006	388709.775	62375.011	454.952	200	270	-60
BMD007	388758.673	62405.171	465.668	200	300	-70
BMD008	388870.059	62591.721	465.142	200	90	-60
BMD009	388797.834	62588.554	424.887	200	125	-60
BMD010	388870.35	62591.322	465.331	250	300	-65
BMD011	388797.229	62589.095	424.86	190.75	300	-65
BMD012	388493.8	62595.086	525.684	147	315	-50
BMD013	388494.058	62594.305	525.684	150	125	-65
BMD014	388431.549	62477.893	526.658	250	125	-60
BMD015	388337.261	62387.711	532.45	200	90	-60
GPD-01	388578.964	62073.984	572.088	238	0	-90
GPD-02	388655.004	62290.996	485.698	250	0	-90
GPD-03	388471.965	61956.017	595.159	250	0	-90
GPD-04	388088.013	61951.01	752.929	424.1	0	-90
GPD-05	387949.992	62150.004	637.88	246.6	0	-90
GPD-06	387942.079	62441.335	636.043	200.1	0	-90
GPD-07	388512.942	61845.02	636.173	130	0	-90
GPD-08	388585.933	62291.014	462.069	120.5	120	-45
GPD-09	388652.985	62340.969	458.081	70	120	-45
GPD-10	388652.985	62340.969	458.081	71	120	-70

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
GPD-11	388689.928	62380.957	444.832	54.3	120	-45
GPD-12	388689.928	62380.957	444.832	90.2	120	-70
GPD-13	388608.012	62277.988	472.783	114.5	120	-45
GPD-14	388606.964	62278.039	472.033	90.5	120	-70
GPD-15	388594.984	62232.934	477.123	130	120	-45
GPD-16	388596.015	62233.064	477.334	110.2	120	-70
GPD-17	388640	62200	493.4	50	120	-70
GPD-18	388596.071	62171.724	501.032	100	120	-45
GPD-19	388596.456	62171.981	501.282	150	120	-70
GPD-20	388524.025	62095.923	497.052	90.2	120	-45
GPD-21	388524.025	62095.923	497.052	70	120	-70
GPD-22	388573.982	62127.935	517.201	90	120	-45
GPD-23	388573.982	62127.935	517.201	110.3	120	-70
GPD-24	388601.543	62308.17	455.641	269.8	120	-50
GPD-25	388565.174	62387.873	436.265	250.4	120	-45
GPD-26	388528.961	62286.092	450.2	235	120	-45
GPD-27	388514.896	62235.944	472.754	212.25	120	-45
GPD-28	388527.986	62356.674	445.012	246.95	120	-50
GPD-28E	388527.986	62356.674	445.012	100.25	165	-49
GSDR0001	387973.243	62145.716	641.149	81	169	-50
GSDR0002	387903.156	61762.561	617.96	265.6	303	-70
GSDR0003	387836.584	61746.49	594.792	257.3	303	-65
GSDR0004	387898.944	61764.667	617.854	252.3	123	-85
GSDR0005	387794.23	61903.459	538.188	261.5	305	-65
GSDR0006	388189.293	62344.91	537.088	150	169	-75
GSDR0007	387793.59	61904.041	537.98	246.7	304	-50
GSDR0008	388189.408	62344.523	537.138	184	169	-60
GSDR0009	388189.441	62344.321	537.206	180	169	-45
GSDR0010	387795.775	61903.415	538.275	223	135	-60
GSDR0011	387695.262	62237.738	586.078	202.7	315	-50
GSDR0012	388189.335	62344.971	537.076	160	0	-90
GSDR0013	387673.843	61842.681	532.132	173.5	270	-60
GSDR0014	388191.153	62344.666	537.139	209	259	-70
GSDR0015	388190.833	62344.615	537.232	171.4	259	-60
GSDR0016	388190.96	62344.371	537.04	125	259	-45
GSDR0017	388191.317	62345.127	537.196	160	304	-75
GSDR0018	387804.232	62326.947	517.819	300	315	-55
GSDR0019	388191.083	62345.263	537.151	203.4	304	-60
GSDR0020	387704.915	62046.392	471.314	165.9	90	-50
GSDR0021	388189.623	62345.426	536.949	152	349	-60
GSDR0022	388189.736	62345.007	537.048	150	349	-80
GSDR0023	388189.654	62345.582	537.212	125	349	-50
GSDS0001	387261.355	62669.412	403.431	150	220	-60
GSDS0002	387584.312	62825.738	347.172	43.2	120	-50
GSDS0003	387468.745	62837.729	325.75	118.6	120	-50

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
GSDS0004	387393.13	62951.262	337.823	45.5	120	-50
GSDS0005	387596.974	63011.383	448.419	179.4	300	-50
GSDS0006	387508.785	63102.62	464.879	170.1	120	-50
GSDS0007	387405.758	63152.76	431.696	163.8	120	-50
GSDS0008	386850	63200	259.906	127.2	120	-50
GSDS0009	387601.861	63083.084	470.704	150	120	-50
GSDS0010	387719.58	63223.68	437.52	150	120	-65
GSDS0011	387645	63441	310	150	120	-50
GSDS0012	387885	63736	274	150	120	-50
GSDS0013	388032	63991	390	150	120	-50
GSDS0014	388312.902	63426.327	345.494	150	290	-50
GSDS0015	388324	62870	398	150	40	-60
GSDS0016	387630	63994	302	207.6	220	-60
GSDS0017	388888	63754	385	221.9	220	-60
GSDS0018	387807	64191	403	155	40	-60
GSDS0019	388060	63448	258	128.1	220	-60
GSDS0020	387970	62871	468	150	300	-60
GSDS0021	387287	63695	168	150	250	-65
GSDS0022	387999	63151	334	150	220	-60
GSDS0023	387699	63662	254	150	220	-60
GSDS0024	388600	63950	444.227	150	40	-60
GSDS0025	388333	63240	415	150	220	-60
GSDS0026	388864	63472	386	150	130	-60
GSDS0027	388408	64331	249	150	300	-60
GSDS0028	388715	63498	388	150	40	-60
GSDS0029	388600	62950	395.055	150	300	-65
GSDS0030	388850	63200	332.081	150	300	-60
GSDS0031	389092	63009	476	150	330	-60
GSDS0032	388961	63720	493	99.7	220	-60
GSDS0033	389063	63455	317	96	220	-60
GT-01	387855.547	62188.21	616.415	100.5	90	-50
GT012	387761.704	62012.04	491.878	180	90	-60
GT013	387747.436	62285.324	553.422	180	90	-60
GT-02	387824.418	62170.766	594.062	80	0	-60
GT-03	387453.387	62730.68	335.981	30.3	0	-90
GT-04	386092.977	61719.566	114.257	40.8	0	-90
GT-05	385811.197	61731.989	179.235	42.3	0	-90
GT-06	386101.291	62146.245	214.581	28.9	0	-90
GT-07	387659.698	62352.101	495.905	105.5	315	-60
GT-08	387546.484	62429.701	415.477	107.4	315	-60
GT-09	387003.14	62330.478	410.994	20	0	-90
GT-10	387664.657	62565.272	441.579	104.7	315	-60
GT-11	387967.52	62655.563	582.274	100.2	315	-70
ILD001	387307.348	62291.737	446.894	200	270	-70
ILD002	387401.636	62292.267	479.789	202.4	270	-70

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
ILD003	387443.726	62245.588	473.656	242.6	270	-70
ILD004	387399.743	62244.667	488.666	201.7	270	-70
ILD005	387756.008	62201.667	601.878	200	270	-70
ILD006	387307.467	62291.689	446.892	176.7	270	-55
ILD007	387400.206	62291.967	481.423	194.6	270	-55
ILD008	387443.228	62245.577	473.851	200.7	270	-55
ILD009	387349.696	62288.787	473.324	200.2	270	-55
ILD010	387394.463	62201	477.454	200	270	-55
ILD011	387466.557	62309.449	459.746	200.6	270	-55
ILD012	387421.489	62248.258	480.593	200.2	270	-55
ILD013	387708.7	62213.731	593.869	200.1	270	-55
ILD014	387348.758	62273.979	472.052	200	270	-55
ILD015	387374.874	62297.35	478.537	200.2	270	-55
ILD016	387645.347	62190.505	563.487	200.2	270	-55
ILD017	387392.472	62201.094	476.967	200	90	-70
ILD018	387791.165	62196.15	610.881	200.4	270	-55
ILD019	387686.211	62199.514	584.692	200	270	-55
ILD020	387425.168	62298.9	479.885	200.1	270	-55
ILD021	387393.434	62223.905	493.559	200	270	-55
ILD022	387374.762	62274.144	487.2	200	270	-55
ILD023	387792.545	62196.632	611.002	200.1	315	-70
ILD024	387644.995	62189.941	563.438	200.3	135	-70
ILD025	387689.023	62199.335	582.444	202.6	135	-70
ILD026	387450.437	62272.053	478.908	200.1	270	-55
ILD027	387731.208	62199.059	597.621	200.1	270	-55
ILD028	387392.635	62224.449	493.532	113	90	-70
ILD029	387400.113	62272.776	489.702	200	270	-55
ILD030	387724.839	62226.118	596.944	195.1	270	-55
ILD031	387818.64	62192.718	608.425	200	270	-55
ILD032	387616.307	62206.057	549.337	200.3	270	-55
ILD033	387449.159	62272.331	479.022	74.2	135	-70
ILD034	387376.166	62248.344	491.122	200.1	270	-70
ILD035	387671.012	62222.251	577.059	201	270	-55
ILD036	387424.649	62272.503	477.807	131.2	270	-55
ILD037	387780.108	62170.066	599.766	200.2	270	-70
ILD038	387470.415	62236.042	483.49	189.9	270	-70
ILD039	387817.762	62192.882	608.421	200	90	-70
ILD040	387778.445	62153.94	588.301	200.3	270	-70
ILD041	387725.471	62226.075	596.972	200.1	90	-70
ILD042	387354.327	62248.143	479.204	150	270	-70
ILD043	387698.529	62239.668	588.043	200.3	270	-70
ILD044	387622.839	62173.564	551.702	199.4	270	-70
ILD045	387818.672	62193.342	608.463	200.6	315	-70
ILD046	387648.41	62223.635	564.333	166	270	-70
ILD047	387808.302	62168.895	593.268	200.3	270	-70

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
ILD048	387372.402	62225.643	469.437	189.3	270	-70
ILD049	387724.141	62243.152	591.033	200	270	-70
ILD050	387756.935	62168.415	587.054	200.1	270	-70
ILD051	387628.116	62201.382	552.822	200.1	270	-55
ILD052	387855.121	62187.561	616.161	202.2	270	-55
ILD053	387624.263	62224.378	553.631	200.3	270	-55
ILD054	387828.434	62169.181	594.048	200.3	270	-55
ILD055	387516.127	62205.545	505.111	200	270	-55
ILD056	387648.325	62246.332	558.936	200	270	-70
ILD057	387748.784	62154.924	572.93	200.1	270	-70
ILD058	387726.236	62241.544	591.31	200	315	-70
ILD059	387825.603	62151.395	583.537	205.4	270	-55
ILD060	387623.358	62156.621	538.405	138	270	-70
ILD061	387601.917	62219.767	541.965	200.2	270	-70
ILD062	387857.085	62188.443	616.375	202	315	-70
ILD063	387516.719	62204.953	505.213	200	90	-55
ILD064	387625.178	62246.6	544.318	200	270	-55
ILD065	387856.565	62189.351	616.304	201.1	90	-55
ILD066	387598.385	62177.494	543.81	200.1	270	-55
ILD067	387824.675	62153.439	583.596	200	135	-70
ILD068	387875.66	62150.306	624.783	200.1	135	-70
ILD069	387585.586	62199.082	536.649	200.2	270	-70
ILD070	387752.867	62219.963	595.377	52.5	270	-55
ILD071	387515.387	62206.029	504.065	150.1	315	-70
ILD072	387699.738	62299.431	535.679	185.2	270	-55
ILD073	387799.129	62288.61	537.153	200.3	90	-70
ILD074	387779.993	62170.675	599.64	201	90	-70
ILD075	387624.18	62175.629	552.218	170.1	135	-70
ILD076	387674.48	62242.945	576.244	201	270	-70
ILD077	387874.726	62148.626	624.771	200.3	270	-70
ILD078	387699.62	62298.207	536.189	200.1	90	-55
ILD079	387760.943	62200.012	604.505	150	90	-55
ILD080	387779.454	62153.181	583.967	200.6	135	-70
ILD081	387798.041	62288.536	538.489	200.7	270	-55
ILD082	387882.313	62199.191	625.053	154.2	270	-70
ILD083	387760.444	62200.002	604.505	150	90	-70
ILD084	387778.277	62153.249	588.385	200	90	-70
ILD085	387878.096	62180.863	630.32	200.2	270	-70
ILD086	387700.711	62239.711	588.177	103.3	270	-70
ILD087	387883.705	62200.77	624.924	200.2	135	-55
ILD088	387825.21	62251.171	569.792	191.3	270	-55
ILD089	387881.373	62199.782	623.182	118	315	-55
ILD090	387699.261	62238.552	586.031	197.4	315	-50
ILD091	387673.204	62240.447	576.815	213.7	315	-60
ILD092	387699.468	62238.385	588.468	213.9	90	-60

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
ILD093	387722.594	62242.399	591.058	245.2	90	-60
ILD094	387907.367	62021.467	576.895	225.25	90	-50
ILD095	387905.154	62104.473	591.12	260.65	90	-50
ILD096	387780.401	62007.222	497.226	130.7	90	-50
ILD097	387780.034	62007.148	497.209	107	90	-80
ILD098	387904.685	62104.737	592.092	175	270	-65
ILD098_MET	387904.67	62104.41	592.945	175	270	-65
ILD099	387781.143	62008.979	497.123	60	135	-50
ILD100	387779.935	62007.5	497.198	112.6	270	-50
ILD101	387884.625	62137.525	630.546	200	270	-50
ILD102	387906.474	62019.719	576.457	100	270	-70
ILD103	387821.389	62099.693	546.921	120.2	90	-50
ILD104	387820.958	62099.656	546.908	92.2	90	-80
ILD105	387781.203	62009.437	494.573	100	0	-50
ILD106	387820.491	62099.29	546.811	140	270	-65
ILD107	387697.941	61789.158	536.072	44.6	180	-50
ILD108	387821.073	62171.139	592.768	178.5	270	-70
ILD109	387822.251	62099.614	547.062	100	135	-50
ILD110	387823.988	62170.111	592.736	150.15	180	-60
ILD111	387820.923	62099.248	546.905	120	180	-50
ILD112	387902.971	61813.545	631.837	100	45	-50
ILD113	387796.181	61796.507	597.743	149	270	-55
ILD114	387820.491	62099.289	546.836	105	225	-60
ILD115	387823.923	62169.764	592.706	153.45	140	-50
ILD116	387903.441	61812.41	631.833	100	90	-50
ILD117	387822.073	62100.893	547.16	124.8	0	-50
ILD118	387902.861	61812.35	631.863	100	90	-80
ILD119	387821.039	62170.447	591.582	75	50	-50
ILD120	387820.25	62099.658	546.852	60	315	-60
ILD121	387904.123	61814.292	631.906	101.6	0	-50
ILD122	387703.256	62146.953	550.099	120	270	-55
ILD123	387820.675	62170.029	592.675	120	0	-90
ILD124	387693.201	62100.076	502.532	160	90	-50
ILD125	387721.661	61880.183	525.809	100	225	-55
ILD126	387702.988	62147.724	550.054	120	90	-55
ILD127	387692.39	62101.37	514.403	126	45	-50
ILD128	387722.068	61881.677	525.072	122	45	-60
ILD129	387838.85	62052.124	531.525	155	315	-55
ILD130	387702.667	62147.66	550.035	130	90	-75
ILD131	387722.52	61882.556	525.77	111	0	-60
ILD132	387691.66	62101.392	501.766	140.25	0	-50
ILD133	387700.881	62147.936	550.061	139.8	45	-50
ILD134	387837.67	62050.129	531.17	146	270	-70
ILD135	387722.231	61879.692	525.894	125	90	-50
ILD136	387692.422	62099.947	501.97	125	315	-55

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
ILD137	387838.07	62050.269	530.971	140.1	0	-90
ILD138	387722.466	61881.461	525.761	125	135	-50
ILD139	387692.841	62100.47	514.487	125	270	-75
ILD140	387839.99	62049.986	531.577	75	135	-60
ILD141	387878.939	62029.257	555.23	100	90	-50
ILD142	387693.362	62099.101	502.5	75	225	-65
ILD143	387837.04	62050.569	530.77	5.4	225	-50
ILD144	387878.593	62030.987	555.898	100	45	-60
ILD145	387694.249	61759.27	531.902	190.8	0	-50
ILD146	387693.242	62100.856	514.364	156	135	-60
ILD147	387878.87	62029.157	555.919	129.3	270	-60
ILD147_MET	387878.812	62029.332	556.807	129.3	270	-60
ILD148	387695.788	61758.218	531.986	160	45	-50
ILD149	387691.715	62100.747	501.229	125.8	180	-60
ILD150	387879.521	62030.167	555.921	107.5	225	-55
ILD151	387875.097	62067.973	558.002	125	180	-60
ILD152	387786.031	62130.036	566.98	122	225	-60
ILD153	387684.142	61962.207	466.15	100	90	-50
ILD154	387694.084	61755.465	531.995	75	90	-50
ILD155	387880.013	62072.131	559.23	111.6	135	-45
ILD156	387684.201	61963.051	465.98	80	0	-55
ILD157	387785.486	62130.382	568.867	179.8	270	-50
ILD158	387875.832	62065.339	557.926	180	315	-45
ILD159	387947.885	62185.679	683.034	150	270	-60
ILD159_MET	387943.945	62187.677	679.121	150	270	-60
ILD160	387708.514	62037.174	472.785	150	90	-50
ILD161	387708.088	62037.14	471.419	200	90	-75
ILD162	387948.551	62185.527	682.995	150	315	-60
ILD163	387708.216	62037.445	471.388	120	15	-50
ILD164	387707.186	62037.117	470.698	120	270	-70
ILD165	387948.33	62186.025	681.72	120.2	260	-60
ILD166	387708.972	62036.14	471.32	110	205	-70
ILD167	387771.743	61950.225	514.787	70	90	-75
ILD168	387707.988	62037.567	471.342	100	45	-50
ILD169	387728.696	61930.328	498.731	73.7	90	-55
ILD170	387748.461	62045.909	487.695	80	90	-70
ILD171	387748.658	62045.874	487.636	70	45	-50
ILD172	387749.566	62045.265	487.683	110	0	-70
ILD173	387795.574	61896.191	540.428	100	90	-60
ILD174	387748.011	62043.857	487.664	70	135	-50
ILD175	387749.196	62042.506	487.704	70	180	-60
ILD176	387727.569	62226.581	596.573	200	270	-80
ILD177	387721.167	62241.9	590.69	200	90	-85
ILD178	387727.186	62226.589	596.506	200	270	-70
ILD179	387630.107	62175.169	553.769	160	240	-83

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
ILD180	387811.865	62027.427	514.102	150	270	-55
ILD180_MET	387811.86	62026.915	517.2	150	270	-55
ILD181	387772.397	62185.521	603.41	250	275	-55
ILD182	387812.403	62027.873	514.156	76.5	90	-75
ILD183	387875.798	62179.155	627.93	60	90	-80
ILD184	387767.388	62095.874	536.123	180	270	-60
ILD185	387773.646	62186.85	603.783	180	90	-85
ILD185_MET	387775.607	62185.626	602.72	180	90	-85
ILD186	387875.788	62148.877	625.23	80	90	-45
ILD187	387853.033	62069.836	545.278	50	90	-60
ILD188	387767.632	62095.872	535.211	140	270	-75
ILD189	387853.733	62068.989	545.332	50	180	-70
ILD190	387876.67	62149.706	625.805	65	0	-60
ILD191	387767.811	62095.872	535.184	95	0	-90
ILD192	387853.758	62069.765	545.305	60	180	-50
ILD193	387767.39	62096.512	536.902	100	304	-65
ILD194	387766.42	62095.701	535.865	85	90	-65
ILD195	387818.718	62193.528	606.997	120	0	-90
ILD196	387643.669	62234.286	559.28	22	276	-72
ILD197	387643.278	62234.329	560.341	100	276	-62
ILD198	387581.081	62150.003	521.313	40	80	-70
ILD199	387805.962	62064.395	510.955	120	290	-60
ILD200	387557.894	62229.168	503.581	45	30	-55
ILD201	387906.595	62022.819	576.741	100	225	-60
ILD202	387632.267	61861.043	500.469	100	90	-50
ILD203	387739.239	61812.569	573.558	100	270	-60
ILD204	387797.34	61795.9	597.821	100	225	-60
ILD205	387674.707	61868.175	517.234	100	270	-60
ILD206	387796.513	61797.104	597.936	73	270	-75
ILD207	387770.726	62140.761	579.192	165	245	-78
ILD208	387676.316	61867.005	517.821	100	90	-50
ILD209	387797.714	61797.53	597.758	150	315	-60
ILD210	387717.239	62147.97	553.458	140	272	-62
ILD211	387770.514	62141.561	579.103	120	48	-80
ILD212	387673.775	61837.974	532.134	100	270	-60
ILD213	387717.527	62149.212	553.469	170	314	-66
ILD214	387771.262	62140.427	578.904	140	173	-75
ILD215	387769.858	62139.747	579.079	120	140	-68
ILD216	387798.612	61796.841	597.673	100	45	-55
ILD217	387798.297	61795.892	597.812	150	90	-75
ILD218	387974.469	62030.762	621.814	30	0	-90
ILD219	387795.254	61898.39	539.975	100	45	-50
ILD220	387796.067	61897.182	539.873	170	225	-60
ILD221	387795.69	61896.168	539.835	100	135	-60
ILD222	387795.829	61896.053	542.71	152.6	180	-50

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
ILD223	387959.896	62066.495	613.491	150	270	-55
ILD224	387798.23	61899.881	539.906	120	0	-89
ILD225	387797.97	61902.728	540.268	120	270	-75
ILD226	387797.146	61902.79	539.64	130	270	-60
ILD227	387963.864	62147.191	642.182	190	270	-45
ILD228	387687.727	61911.445	492.214	130	360	-53
ILD229	387687.317	61909.295	492.775	118	90	-60
ILD230	387634.437	61819.707	505.225	110	90	-45
ILD231	387966.775	62144.043	641.518	75	270	-89
ILD232	387823.484	62151.198	582.147	180	270	-70
ILD233	387685.858	61910.603	497.541	100	180	-62.5
ILD234	387633.69	61819.622	505.938	100	270	-65
ILD235	387634.4	61818.973	505.834	90	180	-50
ILD236	387687.884	61910.644	492.65	165	45	-45
ILD237	387671.009	62021.95	463.234	125	90	-65
ILD238	387669.981	62020.516	461.983	240	135	-45
ILD239	387632.315	61860.879	500.434	180	270	-60
ILD240	387686.459	61910.319	492.593	214	130	-45
ILD241	387668.027	62023.95	462.224	250	310	-45
ILD242	387708.729	61853.736	541.868	70	270	-55
ILD243	387699.269	61828.735	548.273	180	130	-65
ILD244	387686.761	61911.5	492.583	200	310	-55
ILD245	387702.54	62036.008	468.656	200	310	-50
ILD246	387699.19	61828.861	548.476	150	130	-78
ILD247	387501.826	62128.531	487.536	200	130	-50
ILD248	387705.497	62032.539	469.335	200	130	-50
ILD249	387699.096	61829.396	549.116	200	310	-70
ILD250	387579.4	62147.992	521.285	161.45	130	-50
ILD251	387691.742	61758.176	531.62	200	310	-50
ILD252	387538.079	61980.921	416.59	260	310	-50
ILD253	387678.995	61960.466	461.818	275	130	-50
ILD254	387630.098	61895.442	477.489	175	310	-55
ILD255	387679.542	61960.708	461.792	175	310	-55
ILD256	387780.849	61843.22	574.853	205.55	270	-55
ILD257	387780.735	61847.222	573.91	300	90	-50
ILD258	387764.975	62142.493	580.3	200	263	-70
ILD259	387763.228	62011.5	489.142	145	250	-70
ILD260	387741.112	61814.875	573.903	160	310	-75
ILD261	387964.949	62147.518	641.836	275	270	-70
ILD262	387946.651	62187.821	681.868	300	270	-79
ILD263	387781.501	61845.563	574.838	300	60	-45
ILD264	387945.078	62112.628	617.583	300	270	-70
ILD265	387801.492	61746.196	588.303	227.55	270	-45
ILD266	387942.705	62123.876	618.393	300	270	-85
ILD267	387799.965	61675.822	564.144	150	270	-50

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
ILD268	387863.862	62088.276	558.439	295	270	-70
ILD269	387797.366	61604.901	544.108	100	270	-50
ILD270	387934.443	61683.759	572.261	175	270	-50
ILD271	387939.934	61757.854	622.206	250	270	-50
ILD272	387937.599	61592.878	527.917	150	270	-55
ILD273	387904.237	61804.857	633.262	310	270	-55
ILD274	387940.157	61757.802	622.313	250	270	-80
ILD275	387905.494	61804.668	632.166	270	270	-80
ILD276	387969.389	62031.458	617.042	367.9	270	-77
ILD277	387941.473	61962.836	621.615	320	270	-85
ILD278	387940.149	61963.01	619.02	400	270	-60
ILD279	387939.922	61961.618	620.307	415	270	-73
ILD280	387595.275	62020.63	447.922	150	270	-60
ILD281	387940	61919.558	625.859	400	270	-85
ILD282	387942.381	61964.906	621.716	372.1	360	-65
ILD283	387945.265	61891.732	633.35	350	270	-75
ILD284	387937.911	61870.588	643.221	313	270	-85
ILD285	387929.358	61943.19	612.947	300	265	-83
ILD286	387942.247	61846.559	655.261	326.6	270	-75
ILD287	387942.743	62040.587	600.017	400	270	-70
ILD288	387935.004	62075.843	598.303	400	270	-83
ILD289	387943.438	62042.274	599.98	375.4	0	-90
ILD290	387934.513	62072.971	596.007	400	270	-70
ILD291	387935.03	62078.195	597.673	410	360	-65
ILD292	387940	61919.558	625.859	405	180	-78
ILD293	387959.736	62066.064	614.903	375	123.5	-70
ILD294	387929.041	61833.421	644.161	400	303.5	-75
ILD295	387969.291	62148.869	641.011	398.4	122.51	-75
ILD296	387960.126	62065.614	614.801	350	123.5	-55
ILD297	387969.608	62148.625	640.731	400	124	-60
ILD298	387928.404	61833.557	644.273	410.9	303.5	-60
ILD299	387959.903	62065.264	614.813	258	79	-70
ILD300	387960.587	62065.212	614.932	326.5	79	-60
ILD301	387969.982	62148.221	640.59	272.2	79	-70
ILD302	387960.835	62065.521	614.823	319	74	-45
ILD303	387970.296	62148.253	640.728	285.2	79	-60
ILD304	387929.899	61830.916	644.296	390	124	-60
ILD305	387960.004	62065.871	615.105	289.4	349	-70
ILD306	387970.625	62148.282	640.896	354.4	79	-50
ILD307	387929.65	61831.103	644.303	82.2	124	-75
ILD308	387960.018	62066.011	615.025	311.1	349	-60
ILD309	387929.409	61831.327	644.208	401.5	124	-75
ILD310	387959.838	62066.84	615.002	449.8	349	-45
ILD311	387969.587	62146.681	640.583	461.5	259	-60
ILD312	387930.877	61831.789	644.225	355.3	79	-70

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
ILD313	387960.724	62065.171	615.283	364.3	169	-45
ILD314	387931.658	61831.939	644.119	315	79	-60
ILD315	387968.598	62146.36	640.31	474	259	-50
ILD316	387932.242	61832.002	644.182	347.3	79	-45
ILD317	387970.837	62146.903	640.912	389.5	0	-90
ILD318	387930.971	61831.931	644.306	402.3	0	-90
ILD319	387971.89	62146.176	640.858	408.5	304	-75
ILD320	387929.909	61832	644.491	251.3	169	-70
ILD321	387908.166	62026.15	575.98	358.4	124	-60
ILD322	387930.159	61831.031	644.428	144.3	169	-45
ILD323	387973.799	62147.033	641.303	334.7	349	-70
ILD324	387927.474	61831.438	644.431	168	259	-45
ILD325	387973.837	62147.225	641.266	371	349	-60
ILD326	387907.807	62026.469	575.926	360.6	0	-90
ILD327	387973.615	62147.949	641.306	161.5	349	-50
ILD328	387973.002	62146.624	641.211	358	169	-70
ILD329	387906.811	62025.008	575.891	333.5	337	-55
ILD330	387973.085	62147.026	641.186	400	169	-60
ILD331	387909.147	62025.311	576.206	225.3	90	-50
ITD001	386842.228	62642.854	373.67	150	135	-60
ITD002	387021.552	62419.718	453.015	130	310	-60
KKD001	388533.31	60903.52	544.032	196	90	-50
KKD002	388557.066	60954.766	546.177	160	180	-60
KKD003	388555.889	60953.442	546.28	172.45	270	-50
KKD004	388298.799	60754.668	439.328	150.1	90	-50
KKD005	388299.361	60753.327	440.39	150	270	-50
KKD006	388524.597	61052.036	516.216	104.3	150	-45
KKD007	388298.918	60753.551	438.572	150	135	-50
KKD008	388324.559	60880.543	400.243	200	90	-45
KKD009	388525.294	61162.441	529.752	200	90	-50
KKD010	388524.32	61051.581	516.281	250	140	-45
KKD011	388524.471	61162.362	529.476	200	270	-50
KKD012	388425.341	61048.335	457.509	165	270	-50
KKD013	388523.684	61050.123	516.374	151.55	90	-50
KKD014	388426.618	61048.592	457.697	140.1	180	-50
KKD015	388635.696	61317.607	672.428	278.65	90	-60
KKD016	387936.783	61095.84	431.574	189.15	90	-50
KKD017	388636.439	61319.259	673.411	226.25	270	-55
KKD018	388065.659	60944.96	418.771	200	90	-50
KKD019	388278.033	60837.081	388.807	200	90	-50
KKD020	388204.21	61036.3	467.031	126	270	-45
KKD021	388833.26	61264.741	642.82	270.55	270	-50
KKD022	388523.11	60701.078	513.268	120	270	-75
LPD001	388069.684	65096.196	616.915	173.8	295	-60
LPD002	388400.345	64978.11	548.945	171.2	295	-70

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
LPD003	387921.195	64860.185	650.307	209.2	295	-60
LPD004	388053.168	64797.011	586.225	29.3	295	-60
LPD004A	388053.421	64797.012	586.201	176.6	295	-50
LPD005	388308.717	65749.957	740.151	220	315	-60
NND001	387993.99	62401.606	669.494	150	135	-70
NND002	387925.125	62472.815	636.093	257.7	315	-55
NND003	387801.407	62330.972	520.077	300.2	315	-55
NND004	387924.174	62474.078	636.053	200	135	-55
NND005	387800.477	62354.047	510.439	169.3	315	-70
NND006	387748.679	62285.949	554.301	200.6	270	-60
NND007	387694.775	62350.228	497.808	128.3	270	-60
NND008	387784.883	62323.54	516.702	143.3	270	-60
NND009	387789.878	62268.176	549.138	209	270	-60
NND010	387780.428	62340.277	507.926	179.5	270	-60
NND011	387719.853	62402.508	469.785	160.5	270	-60
NND012	387695.353	62350.186	497.857	179.6	90	-55
NND013	387790.488	62267.224	548.974	175.6	225	-55
NND014	387750.224	62282.918	554.308	181	225	-55
NND015	387719.906	62402.683	469.806	189.8	90	-55
NND016	387755.747	62380.411	488.243	148.6	270	-60
NND017	387814.773	62262.818	558.771	221.1	270	-60
NND018	387783.423	62324.34	516.575	134.1	90	-55
NND019	387659.787	62350.582	496.563	150.5	270	-55
NND020	387748.753	62286.892	554.214	202	90	-55
NND021	387756.439	62382.764	488.198	206.4	90	-50
NND022	387677.719	62406.683	456.45	115	270	-55
NND023	387817.067	62263.84	558.569	260.1	225	-70
NND024	387671.858	62325.394	516.784	168.1	90	-50
NND025	387688.473	62373.642	479.945	115	270	-60
NND026	387783.534	62287.888	538.266	202.8	90	-50
NND027	387678.032	62406.185	455.371	96.1	90	-50
NND028	387573.865	62395.715	436.32	126	90	-50
NND029	387672.813	62325.88	516.853	147.3	270	-60
NND030	387610.77	62396.128	445.429	126.7	90	-50
NND031	387589.843	62379.426	452.81	127.1	90	-50
NND032	387681.823	62298.897	537.485	128	90	-60
NND033	387647.237	62511.42	436.136	105.6	225	-60
NND034	387785.175	62288.046	538.217	195.5	270	-60
NND035	387676.657	62443.268	448.732	147.5	225	-60
NND036	387629.196	62319.605	510.517	154.7	270	-60
NND037	387685.7	62297.326	536.674	140.9	225	-60
NND038	387646.423	62510.724	436.032	130.8	315	-60
NND039	387784.952	62289.984	538.094	289.3	225	-60
NND040	387677.929	62441.857	449.984	194.6	315	-60
NND041	387664.16	62564.58	439.943	178.3	225	-60

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
NND042	387882.322	62469.034	635.862	234.6	225	-60
NND043	387631.023	62321.259	510.104	157	315	-70
NND044	387682.444	62299.442	537.425	168.6	315	-60
NND045	387657.222	62438.121	438.625	115.8	225	-60
NND046	387701.726	62402.189	465.034	131.9	315	-50
NND047	387785.743	62289.78	538.023	213.6	315	-60
NND048	387658.225	62439.003	438.734	133	315	-55
NND049	387702.891	62401.496	465.088	96.6	225	-60
NND050	387815.014	62264.861	556.771	214.7	315	-60
NND051	387883.242	62469.028	635.987	224	315	-70
NND052	387658.879	62437.857	439.118	93.1	135	-60
NND053	387703.283	62401.888	465.092	95.3	45	-60
NND054	387895.038	62394.517	582.513	203	315	-60
NND055	387660.54	62351.344	496.033	160	0	-90
NND056	387740.503	62592.506	480.496	29	315	-60
NND057	387627.924	62318.395	509.64	71.8	90	-55
NND058	387657.715	62348.515	495.392	116	90	-55
NND059	387894.192	62396.779	582.572	243.5	225	-60
NND060	387848.498	62244.648	590.561	5.2	0	-60
NND061	387884.767	62470.07	636.107	292.7	180	-60
NND062	387721.049	62401.332	469.795	102.6	315	-60
NND063	387896.774	62393.906	582.996	170.4	0	-60
NND064	387769.737	62493.297	534.333	159	180	-60
NND065	387860.34	62296.179	587.751	232	0	-60
NND066	387968.131	62654.293	582.36	223.5	180	-60
NND067	387896.485	62395.748	582.937	250	180	-60
NND068	387883.126	62467.923	636.041	153.3	45	-70
NND069	387756.035	62383.25	488.209	182.1	135	-60
NND070	387784.76	62325.189	516.719	153.8	315	-60
NND071	387799.837	62327.063	518.281	254	135	-60
NND072	387755.903	62383.284	486.463	120.6	315	-60
NND073	387876.716	62366.177	563.016	175.8	135	-60
NND074	387799.622	62353.213	510.974	175	135	-60
NND075	387779.855	62342.441	506.643	117	0	-60
NND076	387894.452	62394.506	582.494	209.2	270	-60
NND077	387831.047	62381.225	529.352	180	135	-60
NND078	387875.703	62365.489	563.195	113.8	315	-60
NND079	387801.667	62329.669	520.004	102	90	-50
NND080	387897.043	62396.541	580.747	176.3	0	-90
NND081	387893.119	62475.767	638.536	199	270	-55
NND081_MET	387894.007	62476.503	632.673	199	270	-55
NND082	387896.099	62475.826	638.62	150	90	-50
NND083	387895.558	62475.723	638.513	120	90	-65
NND084	387867.171	62278.469	597.875	200	270	-65
NND084_MET	387866.986	62279.022	598.206	150	270	-65

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
NND085	387782.483	62302.126	528.014	133.85	0	-90
NND086	387895.5	62475.821	638.527	280	255	-50
NND087	387782.238	62301.364	528.11	115	225	-60
NND088	387868.338	62276.998	597.986	80	90	-45
NND089	387997.561	62590.376	588.847	250.8	270	-55
NND090	387867.787	62277.269	597.013	260	225	-45
NND091	387998.331	62590.297	588.776	216.4	270	-80
NND092	387998.511	62592.742	588.654	304.7	315	-50
NND093	387695.845	62377.382	475.474	75	90	-50
NND094	387868.788	62277.971	598.136	135	0	-90
NND095	387693.362	62377.421	475.623	75	0	-90
NND096	387694.191	62378.93	475.421	101.5	45	-55
NND097	387999.093	62595.661	588.428	122.85	0	-50
NND098	387718.983	62319.185	519.863	125	180	-55
NND099	387694.37	62376.485	475.587	90	135	-65
NND100	387999.241	62590.591	588.713	162.1	90	-60
NND101	387721.066	62318.327	519.9	90.15	135	-50
NND102	387995.94	62591.542	588.161	202.6	240	-50
NND103	387721.075	62319.586	519.685	110	90	-80
NND104	387997.831	62593.777	588.65	205.5	45	-60
NND105	387722.601	62319.697	519.739	130	45	-60
NND106	387693.258	62376.73	475.403	76.6	180	-50
NND107	387692.859	62376.922	475.476	75.2	225	-65
NND108	388005.011	62510.081	624.586	200	270	-55
NND108_MET	388005.387	62509.81	624.517	200	270	-55
NND109	387722.155	62319.564	519.794	115.6	270	-55
NND110	387693.603	62378.771	475.378	100.4	270	-60
NND111	387695.08	62376.748	475.344	90	315	-70
NND112	388005.917	62510.311	624.445	200	270	-80
NND113	387722.574	62319.244	519.801	150	225	-65
NND114	387694.322	62377.369	476.329	105	0	-55
NND115	387722.283	62322.929	519.707	120	315	-70
NND116	388004.939	62508.63	624.515	165.8	135	-65
NND117	387722.817	62318.806	519.904	62.5	0	-90
NND118	388005.908	62509.734	624.542	200	90	-70
NND119	387677.677	62441.912	448.66	100.1	90	-45
NND120	387592.763	63080.557	472.106	250	300	-50
NND121	387876.804	62368.197	561.726	100	90	-50
NND122	387678.157	62441.944	448.676	100	90	-60
NND123	387876.575	62367.726	561.753	150	270	-65
NND124	388005.475	62510.391	624.492	200	53	-70
NND125	387677.894	62440.752	448.685	150	45	-60
NND126	387593.166	63080.138	472.005	246.45	135	-50
NND127	388003.771	62509.724	624.593	200	315	-60
NND128	387786.996	62335.956	512.12	89.1	45	-80

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
NND129	387676.618	62439.48	448.34	150	0	-60
NND130	387738.034	62347.477	497.405	110	225	-75
NND131	388005.133	62510.307	623.562	140	0	-60
NND132	387678.601	62439.475	448.673	100	66	-55
NND133	387592.801	63080.453	472.087	150	135	-70
NND134	387913.256	62236.868	633.345	195.25	270	-75
NND135	387672.297	62322.085	515.387	120	90	-80
NND136	388004.047	62508.117	624.605	205	180	-60
NND137	387745.466	62981.591	466.818	200	135	-50
NND138	387672.2	62322.293	515.314	140	175	-85
NND139	387912.942	62236.863	633.343	150	270	-60
NND140	388005.743	62508.431	624.498	93.7	235	-55
NND141	388005.851	62510.695	624.402	110	300	-65
NND142	387745.175	62981.879	466.893	150	135	-70
NND143	387674.491	62322.534	517.87	110	275	-75
NND144	387896.177	62475.287	638.769	125.1	235	-70
NND145	387965.27	62283.243	670.52	14.75	270	-65
NND146	387967.932	62451.674	662.134	230	90	-80
NND147	387722.294	63315.596	382.21	150	135	-50
NND148	387895.877	62476.596	637.769	105	235	-60
NND149	388004.679	62509.562	624.574	201	315	-75
NND150	387895.768	62476.237	638.625	175	270	-67
NND151	387967.847	62283.802	671.088	200	225	-60
NND152	387968.285	62451.666	662.207	230	90	-60
NND153	387791.085	62923.873	500.913	200	135	-50
NND154	387965.682	62574.485	585.828	160	90	-50
NND155	388005.858	62509.568	624.608	130	0	-75
NND156	387741.004	62593.564	480.235	100	135	-60
NND157	387968.477	62451.679	662.274	160	45	-63
NND158	387964.59	62574.513	585.824	160	90	-85
NND159	387896.001	62476.237	638.697	150	270	-80
NND160	387741.577	62593.917	478.034	57.8	90	-55
NND161	387964.385	62574.295	585.802	160	135	-50
NND162	387967.667	62451.26	661.41	200	135	-60
NND163	387895.341	62475.645	638.64	200.05	290	-60
NND164	387831.532	62386.006	532.793	50	270	-80
NND165	387831.003	62386.102	532.355	150	270	-60
NND166	387965.282	62574.326	585.852	127.5	0	-60
NND167	387968.093	62452.028	662.032	111.3	315	-65
NND168	387895.84	62475.094	638.706	140	235	-83
NND169	387759.353	62384.163	488.766	110	0	-45
NND170	387962.918	62572.926	584.621	140	270	-60
NND171	387831.077	62386.444	532.628	210	290	-50
NND172	387895.539	62474.985	638.593	110.1	135	-80
NND173	387759.847	62384.746	488.616	140	45	-45

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
NND174	387697.925	62295.87	539.253	157.4	270	-70
NND175	387964.271	62573.025	585.61	130	180	-50
NND176	387895.546	62474.902	638.554	126.3	150	-65
NND177	387831.954	62386.575	533.308	160	315	-52
NND178	387894.916	62474.779	638.634	165	353	-75
NND179	387963.384	62573.187	584.214	130	200	-50
NND180	387814.48	62501.931	556.956	150	360	-65
NND181	387831.971	62384.686	532.574	75	225	-65
NND182	387642.922	62291.207	533.795	90	233	-59
NND183	387814.696	62502.1	556.809	60	0	-90
NND184	387763.309	62453.238	511.099	45	200	-80
NND185	387763.262	62455.314	509.243	100	95	-60
NND186	387814.646	62501.284	556.748	125	5	-55
NND187	387763.092	62453.497	511.187	80	355	-65
NND188	387814.527	62500.682	556.785	100	25	-78
NND189	387814.692	62501.548	552.009	100	70	-60
NND190	387815.775	62500.437	557.08	120	180	-60
NND191	387997.899	62367.671	682.147	250	0	-50
NND192	387663.329	62265.545	552.571	90	280	-52
NND193	387813.68	62500.548	557.052	100	303	-65
NND194	387863.337	62369.067	552.537	50	208	-58
NND195	387863.603	62369.148	552.543	30	162	-45
NND196	387751.299	62285.832	552.842	57	353	-77
NND197	387998.98	62367.31	681.92	260	316.2	-51.5
NND198	387815.6	62501.492	556.985	130	32	-65
NND199	387812.944	62461.535	550.369	100	170	-80
NND200	387716.674	62381.141	475.797	65.45	152	-45
NND201	387866.063	62237.204	603.312	60	340	-75
NND202	387894.31	62359.754	570.135	40	210	-54
NND203	387812.512	62461.761	550.48	115	340	-46
NND204	387736.109	62345.876	497.571	30	280	-50
NND205	388001.362	62366.95	681.992	165	293	-53
NND206	387896.176	62355.828	574.803	40	174	-45
NND207	387866.027	62236.284	603.36	60	48	-52
NND208	387815.276	62500.717	557.032	180	335	-65
NND209	388001.596	62366.614	681.771	200	270	-60
NND210	387888.481	62268.776	614.254	30	90	-45
NND211	387916.793	62291.521	637.789	43	298	-81
NND212	387825.454	62688.11	480.495	200	270	-75
NND213	387888.135	62268.989	614.076	30	0	-90
NND214	387917.038	62291.748	635.96	80	360	-45
NND215	388117.208	62631.646	527.427	86.8	270	-45
NND216	388001.756	62367.482	681.521	140	20	-60
NND217	387636.886	62414.973	441.345	50	284	-54
NND218	387824.534	62688.825	480.798	150.1	270	-55

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
NND219	387917.895	62290.999	637.656	75	276	-70
NND220	387814.016	62499.836	556.964	120	180	-70
NND221	388106.285	62511.331	545.823	65	270	-45
NND222	388001.48	62365.486	681.155	160	45	-65
NND223	388089.948	62433.027	578.522	100	270	-50
NND224	387813.247	62501.238	556.89	124	225	-55
NND225	388106.701	62511.333	545.802	117.3	270	-75
NND226	387827.56	62685.621	478.638	148.8	180	-60
NND227	387803.472	62636.22	466.018	200	270	-75
NND228	388106.04	62511.124	545.789	200	225	-45
NND229	388088.368	62433.058	579.687	90	215	-50
NND230	388001.367	62366.449	681.078	170	90	-70
NND231	387813.342	62499.624	556.965	120	270	-70
NND232	387828.963	62687.71	481.167	100	90	-50
NND233	387812.979	62499.629	556.921	18.1	270	-50
NND234	387826.86	62688.266	480.97	150	0	-55
NND235	388107.818	62512.203	544.774	110	90	-80
NND236	387802.781	62636.638	465.944	132.9	270	-50
NND237	387988.799	62413.329	667.542	110	270	-70
NND238	387924.082	62472.67	635.126	165	328	-57
NND239	388088.759	62433.606	579.602	90	0	-90
NND240	387988.71	62413.181	667.73	160	280	-50
NND241	388087.142	62434.421	579.497	135	45	-60
NND242	387803.711	62637.173	465.874	96.4	90	-60
NND243	388108.556	62512.096	545.643	60	90	-60
NND244	387724.076	62587.891	474.789	114	45	-60
NND245	388108.161	62513.556	545.732	125.75	315	-55
NND246	387809.742	62608.149	482.535	85.6	130	-50
NND247	387988.691	62413.24	667.528	135	265	-50
NND248	388087.847	62432.788	579.441	130	310	-50
NND249	387723.458	62587.6	474.813	60	270	-65
NND250	387808.082	62607.519	482.584	85	180	-50
NND251	387724.658	62587.163	474.779	100	165	-45
NND252	388087.542	62434.223	578.409	79.3	0	-50
NND253	387989.065	62413.092	667.539	120	0	-90
NND254	387809.08	62607.727	482.491	101.1	270	-60
NND255	387988.795	62414.948	667.583	110	38	-70
NND256	387809.326	62607.384	482.578	100.7	90	-60
NND257	387805.905	62606.602	481.531	200	205	-45
NND258	387986.122	62410.99	667.424	112	50	-60
NND259	387990.396	62410.99	667.424	70	170	-50
NND260	387987.144	62414.019	667.553	90	200	-70
NND261	387808.859	62607.611	481.556	100	155	-45
NND262	387990.003	62414.29	667.29	85	200	-50
NND263	387925.2	62473.826	634.466	220	345	-63

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
NND264	388011.043	62565.459	603.935	175	270	-70
NND265	387927.552	62251.475	643.38	60	0	-45
NND266	387866.102	62278.848	597.781	120	315	-60
NND267	387763.249	62453.493	511.97	130	270	-70
NND268	387926.257	62252.91	642.404	90	270	-60
NND269	388010.406	62565.544	603.842	60	270	-50
NND270	387928.49	62473.444	635.33	75	45	-50
NND271	388010.564	62564.504	604.214	105	90	-75
NND272	387775.734	62469.695	525.776	150	270	-75
NND273	387926.309	62253.266	643.753	69	0	-90
NND274	388010.263	62564.531	604.287	141	90	-60
NND275	387775.69	62469.534	525.969	110	90	-65
NND276	387779.297	62556.708	511.626	90	270	-75
NND277	388010.363	62564.391	604.349	160	90	-48
NND278	387780.019	62554.774	512.025	160	210	-60
NND279	387774.981	62470.713	525.679	110	0	-60
NND280	388007.755	62564.608	603.814	130	135	-60
NND281	387779.356	62554.811	511.96	200	210	-45
NND282	387774.855	62471.001	526.013	200	0	-45
NND283	388008.041	62564.668	603.895	200	135	-45
NND284	387780.946	62556.381	511.699	162	60	-70
NND285	387774.352	62470.823	525.812	160	310	-55
NND286	387781.864	62556.865	511.984	110	60	-45
NND287	388004.734	62508.887	624.509	175	135	-48
NND288	387779.251	62556.115	512.324	150	250	-55
NND289	387774.115	62471.027	526.203	130	130	-45
NND290	388005.996	62509.569	624.534	175	90	-55
NND291	387779.17	62556.668	511.475	150	276	-50
NND292	387774.036	62471.656	525.689	190	270	-60
NND293	388006.181	62508.32	623.646	170	70	-65
NND294	387940.56	62520.385	598.418	200	295	-47
NND295	387859.558	62295.644	588.855	135	325	-55
NND296	387940.4	62519.456	598.362	110	205	-63
NND297	387943.008	62520.954	598.242	220	315	-50
NND298	387942.711	62519.049	598.308	200	270	-60
NND299	387942.936	62518.795	598.292	180	270	-75
NND300	387940.361	62518.936	598.339	170	15	-76
NND301	387907.902	62215.635	638.278	120	270	-60
NND302	387917.418	62288.723	637.751	150	335	-57
NND303	388005.815	62507.05	624.73	130	155	-45
NND304	388002.012	62365.74	679.807	300	270	-85
NND305	387912.927	62238.603	633.485	300	0	-90
NND306	387966.381	62285.366	671.578	275	277	-75
NND307	387967.333	62283.66	671.633	250	10	-75
NND308	387965.369	62281.108	668.836	411.9	270	-85

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
NND309	388001.894	62362.242	679.876	400	260	-75
NND310	387947.866	62321.235	652.111	350	270	-85
NND311	388003.996	62363.628	679.929	350	104	-80
NND312	388003.219	62366.109	679.721	356.8	124	-70
NND313	387967.593	62284.775	668.993	389.4	124	-80
NND314	388087.88	62433.197	578.45	319.7	124	-75
NND315	388003.743	62365.805	679.851	221.5	124	-55
NND316	387968.008	62284.373	669.214	380.3	124	-60
NND317	388088.27	62432.924	578.521	247.5	124	-60
NND318	388087.541	62433.345	578.511	251.1	0	-90
NND319	388003.551	62366.414	679.866	370	169	-70
NND320	388085.567	62435.034	578.282	250	169	-70
NND321	388085.629	62434.647	578.315	328	169	-60
NND322	388003.632	62365.612	679.781	381	169	-50
NND323	388085.715	62434.272	578.338	369.5	169	-50
NND324	387967.014	62285.068	669.14	376.6	169	-70
NND325	388087.203	62435.506	578.011	260	259	-75
NND326	387967.332	62283.735	669.004	443.6	169	-45
NND327	388003.528	62365.26	679.784	342.1	79	-70
NND328	388086.865	62435.503	578.184	403	259	-60
NND329	388003.551	62365.235	679.954	350	79	-60
NND330	387967.926	62287.048	669.303	350	79	-60
NND331	388088.313	62435.436	578.15	241	304	-75
NND332	388087.605	62435.923	578.108	376	304	-60
NND333	388004.148	62365.25	680.006	338.5	79	-50
NND334	388087.436	62435.5	577.913	244	79	-75
NND335	388087.879	62435.578	578.217	210	79	-60
NND336	388003.405	62364.511	680.161	354.8	304	-80
NND337	388088.764	62435.739	578.153	69.8	79	-50
NND338	388003.072	62364.799	679.991	350	304	-65
PCD001	387239.055	61625.259	430.658	250	130	-45
PCD002	387227.676	61506.973	495.848	150	150	-55
PCD003	387076.188	61635.385	404.759	250	130	-45
PCD004	387225.702	61507.432	495.881	150	225	-70
PCD005	387150.756	61878.606	377.706	165	140	-50
PCD006	387238.446	61625.785	431.58	160.5	225	-45
PDH-01	388558.028	62300.704	442.224	125	123	-60
PDH-02	388602.05	62290.009	469.974	125	123	-63
PDH-03	388632.288	62203.36	511.3	125	123	-45
PDH-04	388626.515	62260.22	488.1	130	123	-60
PDH-05	388658.449	62235.94	521.4	135	123	-65
PDH-06	388552.405	62154.38	485.6	135	123	-50
PDH-07A	388592.498	62234.035	474.196	130	123	-45
PDH-07B	388592.485	62234	475.5	130	123	-90
PDH-08A	388496.815	62172.835	496.75	185.1	180	-45

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
PDH-08B	388495.432	62172.545	496.87	160.4	124	-60
PDH-09	388490.331	62301.586	472.748	185	123	-60
PDH-10	388481.912	62206.83	494.1	180	123	-75
PDH-100	388664.272	61918.206	494.509	110	0	-88.9
PDH-101	388404.651	61914.199	622.857	369.5	124.2	-64.8
PDH-102	388486.793	61879.8	656.788	200	210.7	-60.9
PDH-103	388428.58	62044.29	529.6	175	302.9	-60.7
PDH-104	388218.534	61998.732	733.599	410.8	123.8	-71.8
PDH-105	388452.733	61991.896	552.565	280	0	-89.6
PDH-106	388528.198	62210.81	463.5	150	301.8	-59.2
PDH-107	388542.845	62168.2	477.2	150	0	-89.8
PDH-108	388616.937	62100.961	575.827	275	124.2	-58.1
PDH-109B	388234.81	62048.199	721.033	410	119.5	-74.3
PDH-11	388458.614	62259.97	500.6	185	123	-70
PDH-110	388561.642	62165.64	487.3	267	127.8	-68.4
PDH-111	388646.855	62136.69	567.87	286.1	126.7	-57.9
PDH-112	388565.451	62201.46	474.6	85	118.4	-67.3
PDH-113	388604.894	62260.778	476.416	142.8	121.6	-65.5
PDH-114	388662.342	62187.64	541.3	262.1	133.1	-46.6
PDH-115	388603.867	62193.01	507.8	234.7	122.9	-65.7
PDH-116B	388243.874	62096.12	715.613	401	121.5	-87.7
PDH-117	388640.863	62233.593	508.3	153.5	126.5	-66.3
PDH-118	388669.69	62248.117	511.384	250.7	123.9	-65.2
PDH-119	388612.597	62315.549	453.777	212.4	123.7	-75.7
PDH-12	388412.276	62107.11	556.275	175.9	123	-85
PDH-120	388828.189	62166.866	433.865	120.8	125	-65.1
PDH-121	388572.266	62326.968	444.335	165.5	319.2	-89.5
PDH-122	388901.912	62195.744	423.048	60	126.4	-65.4
PDH-123	388291.838	62193.41	628.6	326.2	131	-85.8
PDH-124	388910.816	62134.001	437.412	151.1	125.5	-67.2
PDH-125	388643.397	62288.44	484.6	250	122.8	-67.8
PDH-126	388743.979	62074.316	487.564	182	134.6	-66.3
PDH-127	388461.688	62312.36	467.4	180.4	124.9	-71.1
PDH-128	388700.808	62074.885	497.749	209.4	127.3	-67.3
PDH-129	388319.738	62217.9	594.3	312.5	114.7	-80.5
PDH-13	388430.672	62215.61	537.5	145.3	123	-80
PDH-130	388406.521	62291.399	494.805	102.6	122.2	-70.5
PDH-131	388027.529	61888.43	716.395	214	303.5	-70
PDH-132	388027.008	61889.193	716.429	215.1	120.5	-70
PDH-133	388061.712	61926.885	743.109	200	303.5	-70
PDH-134	388060.634	61927.35	743.082	250.2	123.5	-70
PDH-135	388082.675	61970.57	748.901	250.6	303.5	-70
PDH-136	388082.719	61970.428	748.915	261	128	-70
PDH-137	388130.699	61999.225	779.423	343.65	128	-70
PDH-138	388105.219	62004.261	762.652	35.5	303.5	-70

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
PDH-139	388129.905	62057.211	783.409	302	124	-75
PDH-14	388437.354	62135.96	545.6	175.5	0	-90
PDH-140	388129.696	62057.527	783.416	338.7	303.5	-70
PDH-141	388112.123	62120.166	757.296	349.7	303.5	-70
PDH-142	388112.123	62120.166	757.296	375	123	-75
PDH-143	388097.379	62195.697	714.782	351.2	303.5	-70
PDH-144	388097.273	62195.006	714.882	309.5	123.5	-70
PDH-145	388000.643	62256.143	703.92	241	90	-60
PDH-146	387997.511	62256.612	703.681	229.5	305	-80
PDH-147	388012.249	62311.691	702.834	277.3	123	-70
PDH-15	388524.227	62260.644	468.255	105	123	-70
PDH-16A	388530.112	62210.19	463.4	115	123	-50
PDH-16B	388530.245	62209.867	459.926	125	0	-90
PDH-17	388441.794	62085.49	536.6	135	123	-70
PDH-18	388450.614	62051.56	516.7	159.8	123	-85
PDH-19	388581.262	62174.56	492.9	125	123	-50
PDH-20	388484.301	62129.26	504.3	150.5	123	-75
PDH-21	388602.411	62157.29	514.7	112.2	123	-45
PDH-22	388640.663	62307.42	466.1	115	123	-50
PDH-23	388559.311	62117.013	507.629	145	123	-45
PDH-24	388706.341	62314.32	507.4	131	123	-75
PDH-25	388745.339	62273.76	468.2	119.9	123	-65
PDH-26A	388529.414	62087.44	503.5	164	123	-45
PDH-26B	388527.698	62085.96	503.9	110	123	-80
PDH-27	388756.666	62309.15	459.4	94.7	123	-65
PDH-28	388809.415	62258.38	429.8	83.3	123	-60
PDH-29A	388750.261	62186.598	491.809	60.5	123	-60
PDH-29B	388749.533	62186.41	494.1	57.8	0	-90
PDH-30	388494.978	62073.611	502.101	85	123	-55
PDH-31	388719.199	62152.42	514.2	123.2	0	-90
PDH-32	388469.541	62019.33	539.619	144	123	-65
PDH-33	388690.305	62099.109	500.215	140	0	-90
PDH-34	388672.044	62063.426	505.725	125.7	206.4	-90
PDH-35	388528.241	62032.152	557.282	190.7	123	-60
PDH-36	388505.416	61988.274	586.201	201.2	123	-60
PDH-37	388635.794	62008.37	524.2	246.7	123	-75
PDH-38	388617.664	61977.83	524.2	153	0	-90
PDH-39	388637.773	61915.095	508.007	150	123	-60
PDH-40	388570.611	62057.26	564.2	70.4	123	-45
PDH-40A	388570.611	62057.26	564.2	192.4	123	-65
PDH-41	388693.335	61849.633	526.113	156.4	123	-60
PDH-42	388473.313	61941.78	610.8	209.7	123	-65
PDH-43	388651.943	61841.555	552.198	215	123	-65
PDH-44	388494.957	61911.449	649.608	290	123	-60
PDH-45	388604.222	61861.949	556.736	202.5	123	-65

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
PDH-46	388665.76	61950.741	486.845	186	123	-65
PDH-47	388389.515	62001.938	597.883	244.8	123	-60
PDH-48	388711.469	62029.772	489.499	163.4	123	-65
PDH-49	388683.604	61999.069	496.766	173	123	-65
PDH-50	388449.318	61906.039	629.593	291.5	123	-65
PDH-51	388741.471	62118.583	500.133	112.3	123	-65
PDH-52	388761.183	62120.074	485.466	121.6	123	-65
PDH-53	388786.304	62162.83	465.76	142.5	123	-65
PDH-54	388490.24	61880.379	656.686	298.2	123	-65
PDH-55	388822.63	62201.17	440.6	106.5	118	-65
PDH-55A	388822.63	62201.17	440.6	189	123	-65
PDH-56	388774.177	62222.71	470.9	148.8	123	-65
PDH-57	388843.845	62239.897	417.433	133.9	123	-65
PDH-58	388680.621	62282.018	507.076	198.4	123	-65
PDH-59	388460.934	61844.327	667.753	363.2	123	-65
PDH-60	388561.947	61832.145	604.076	225.5	123	-65
PDH-61	388427.446	61867.151	656.519	359.1	123	-65
PDH-62	388499.285	61822.379	643.967	235.6	123	-65
PDH-63	388325.996	61925.462	667.537	314.2	123	-65
PDH-64	388590.46	61751.852	617.765	277.4	123	-65
PDH-65	388607.544	61798.53	606.1	249.9	123	-65
PDH-66	388345.211	61962.842	636.916	303.6	123	-65
PDH-67	388734.875	61815.4	550.3	204.9	123	-65
PDH-68	388704.857	61915.04	488.4	165.6	123	-60
PDH-69	388341.007	62030.904	615.074	281.6	123	-70
PDH-70	388708.797	61952.83	474.6	151	123	-57
PDH-71	388371.464	62063.289	606.517	282.4	123	-85
PDH-72	388775.7	61994.069	458.1	128.9	123	-65
PDH-73	388813.031	62031.775	447.601	129.5	123	-65
PDH-74	388817.071	62077.173	444.478	104.3	123	-65
PDH-75	388349.785	62133.653	619.944	314.4	123	-80
PDH-76	388834.463	62122.188	437.933	111.7	123	-65
PDH-77	388392.573	62163.38	587.6	323	0	-90
PDH-78	388876.424	62165.928	423.794	128.6	123	-65
PDH-79	388345.064	62093.449	620.465	353	123	-90
PDH-80	388881.988	62229.107	420.759	174.3	123	-65
PDH-81	388920.906	62256.353	420.632	166.2	123	-65
PDH-82	388889.648	62282.707	413.958	166.5	123	-65
PDH-83	388307.553	62062.66	653.4	329.9	118.4	-81.1
PDH-84	388831.784	62313.708	417.551	174.5	123	-65
PDH-85	388901.912	62320.007	406.619	153	119.2	-66.4
PDH-86	388941.261	62291.394	432.825	154.1	123	-65
PDH-87	388311.365	62011.49	639.7	382.1	123	-68
PDH-88	388949.86	62228.902	432.179	161.7	123	-65
PDH-89	388932.828	62195.82	435.2	151.2	123	-65

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
PDH-90	388746.089	62271.257	466.287	245.3	123	-65
PDH-91	388855.333	62209.69	424.8	126.5	123	-65
PDH-92	388748.432	62151.954	496.634	175	0	-90
PDH-93	388786.767	62248.617	449.926	200	123	-65
PDH-94	388275.838	61948.27	675.5	375.5	123	-65
PDH-95	388724.602	62301.564	486.994	238.5	125.4	-67.1
PDH-96	388773.912	62225.72	470.7	177.7	30.3	-60.9
PDH-97	388354.562	61890.966	657.862	305.2	121.9	-66.6
PDH-98	388786.411	62163.652	465.804	175.1	122.4	-61.3
PDH-99	388642.392	61914.026	507.322	150.2	113.5	-60.5
PDS-01	387619.784	62199.828	548.8	108	350	-55
PDS-02	387619.784	62199.828	548.8	5.5	180	-55
PEDM0001	388135.471	61997.215	779.67	275	128	-70
PEDM0002	388032.468	61900.047	719.628	215.2	120	-70
PEDM0003	388113.379	62120.41	757.903	83.8	124	-75
PEDM0004	388492.057	61909.373	649.492	290	123	-60
PEDM0005	388533.203	62206.787	460.324	115	0	-90
PEDM0006	388387.8	61992.134	598.327	150	123	-60
PEDM0007	388328.395	61916.627	667.978	150	123	-67
PEDM0008	388097.663	62195.517	714.116	200	124	-70
PEDM0009	388347.804	62130.717	622.427	315	123	-80
PEDM0010	388850.519	62225.363	416.949	80	123	-65
PEDM0011	388594.613	62227.454	477.386	141.3	120	-45
PEDM0012	388646.053	62323.529	457.988	115	123	-50
PEDM0013	388666.988	61951.81	486.422	113	123	-65
PEDR0001	388328.385	61920.421	667.998	235	169	-50
PEDR0002	388050.404	62203.887	718.225	370.4	124	-60
PEDR0003	388033.285	61897.412	719.59	298.3	79	-50
PEDR0004	388386.758	61993.137	598.365	250	0	-90
PEDR0005	388239.184	62107.993	712.018	423.5	304	-60
PEDR0006	388106.035	61962.876	761.277	410.5	259	-80
PEDR0007	388064.534	62103.736	730.549	400	124	-75
PEDR0008	388491.778	61909.43	649.75	295.8	303	-75
PEDR0009	388601.004	61764.912	616.141	302	304	-70
PEDR0010	388230.732	62212.647	609.2	242.1	79	-70
PEDR0011	388364.304	62015.834	601.187	288.7	303	-75
PEDR0012	388087.529	61951.024	752.852	348	123	-75
PEDR0013	388556.577	61847.379	598.465	241.5	0	-90
PEDR0014	388113.295	62120.256	757.905	392	124	-65
PEDR0015	388600.483	61765.197	616.232	341.9	304	-55
PEDR0016	388104.917	61962.677	761.082	165	259	-50
PEDR0017	388030.667	61896.263	719.341	308.5	259	-70
PEDR0018	388050.55	62203.758	717.711	359.9	124	-50
PEDR0019	388064.645	62103.597	730.61	336	124	-60
PEDR0020	388240.043	62107.449	711.903	279.4	0	-90

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
PEDR0021	388231.118	62212.742	609.034	201.4	79	-60
PEDR0022	388364.027	62016.036	601.226	231	303	-60
PEDR0023	388556.941	61847.036	598.471	224.5	124	-70
PEDR0024	388601.327	61764.595	616.111	240.8	0	-90
PEDR0025	388030.25	61896.221	719.424	135	259	-55
PEDR0026	388557.561	61846.706	598.429	271.2	124	-55
PEDR0027	388087.446	61951.269	752.857	426.4	0	-90
PEDR0028	388602.345	61764.632	616.054	253	124	-70
PEDR0029	388231.569	62212.719	609.172	96.8	124	-75
PEDR0030	388364.558	62015.673	601.159	271.3	0	-90
PEDR0031	388240.935	62108.186	712.009	102.7	349	-70
PEDR0032	388602.781	61764.273	616.067	266.7	124	-55
PEDR0033	388030.828	61894.659	719.319	357.5	304	-70
PEDR0034	388557.601	61846.771	598.344	135.5	304	-75
PEDR0035	388364.603	62015.677	600.863	35.3	123	-67.5
PEDR0036	388061.99	61927.033	743.172	435.9	304	-82.5
PEDR0037	387959.933	61843.511	663.18	300	124	-80
PEDR0038	387977.319	61816.813	648.806	213.8	123	-75
PEDR0039	388136.535	61996.512	779.751	275	128	-70
PEDR0040	388434.525	61815.405	650.613	350.2	123	-80
PEDR0041	388089.325	61950.342	752.639	530	303	-75
PEDR0042	388233.097	61835.338	659.81	200.5	124	-60
PEDR0043	388434.741	61815.205	650.554	352.3	123	-65
PEDR0044	387960.43	61843.325	663.344	299.5	124	-65
PEDR0045	388105.765	61965.179	761.554	300	304	-75
PEDR0046	388230.609	61834.126	659.516	259	169	-70
PEDR0047	388206.005	62071.707	746.293	417.9	0	-90
PEDR0048	388230.343	61834.727	659.64	150	169	-50
PEDR0049	388230.486	61834.42	659.689	202.8	0	-90
PEDR0050	387961.043	61842.932	663.398	65	124	-50
PEDR0051	388850.56	62225.349	417.128	126	123	-65
PEDR0052	388232.72	61832.131	659.733	284	79	-70
PEDR0053	388097.973	62198.329	714.017	257.7	124	-70
PEDR0054	388434.305	61815.457	650.372	123.5	0	-90
PEDR0055	388645.604	62323.201	457.966	243.1	123	-50
PEDR0056	388434.909	61815.685	650.439	275	303	-65
PEDR0057	388594.651	62228.092	477.413	243.3	120	-45
PEDR0058	388347.725	62130.623	622.449	211	0	-90
PEDR0059	388759.248	62012.128	462.049	166.5	124	-75
PEDR0060	388106.667	61965.998	761.464	337.6	349	-65
PEDR0061	388534.954	62205.686	460.429	115	123	-50
PEDR0062	388201.71	62070.681	746.276	153.5	124	-65
PEDR0063	388233.432	61832.263	659.841	140	79	-50
PEDR0064	388346.465	62133.464	622.464	180.8	303	-70
PEDR0065	388590.048	62229.163	477.265	291.1	300	-65

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
PEDR0066	388434.259	61816.044	650.523	122.6	304	-50
PEDR0067	388759.66	62011.841	462.173	261.3	124	-60
PEDR0068	388230.003	61828.829	659.459	363	304	-60
PEDR0069	388387.396	61993.176	598.229	181.9	123	-75
PEDR0070	388345.8	62134.009	622.441	252.1	303	-50
PEDR0071	388435.752	61815.325	650.62	223	123	-50
PEDR0072	388134.391	61838.07	657.918	151	124	-70
PEDR0073	388251.643	61932.82	701.21	8.5	124	-50
PEDR0074	388232.673	61829.972	659.69	262.5	349	-70
PEDR0075	388345.555	62134.206	622.784	125	303	-45
PEDR0076	388413.016	61888.748	640.852	160	124	-67
PEDR0077	388250.261	61933.744	701.207	280	0	-90
PEDR0078	388292.842	62191.913	627.769	326.2	131	-85
PEDR0079	388089.545	61950.315	752.546	80	304	-60
PEDR0080	388061.537	61927.165	743.272	200	303.5	-70
PEDR0081	388241.906	61889.92	690.066	125	124	-80
PEDR0082	388427.532	61868.3	656.214	359.1	123	-65
PEDR0083	388089.726	61950.115	752.747	80	0	-90
PEDR0084	388275.461	61801.747	639.428	60	123	-50
PEDR0085	388354.637	61780.205	625.004	94.9	124	-70
PEDR0086	388929.733	62226.443	427.441	100	124	-60
PEDR0087	388274.331	61802.579	639.463	11	0	-90
PEDR0088	388798.337	62180.029	450.861	50	304	-90
PEDR0089	388793.462	62130.531	458.511	132	0	-90
PEDR0090	388797.211	62277.415	431.934	175.9	124	-71.71
PEDR0091	388005.88	62166.797	666.815	334.6	0	-90
PEDR0092	388490.144	61910.991	649.552	272	304	-70
PEDR0093	388839.347	62236.422	419.287	146.1	124	-70
PEDR0094	388937.172	62182.783	440.078	74	124	-55
PEDR0095	388831.788	62150.543	435.84	150	303	-75
PEDR0096	388842.033	62276.151	410.17	50	124	-60
PEDR0097	388794.204	62129.986	458.542	104.5	123	-60
PEDR0098	388838.351	62187.541	429.333	103.2	124	-64
PEDR0099	388817.574	62303.651	422.736	150.7	124	-60
PEDR0100	388796.306	62096.911	454.612	120.2	124	-70
PEDR0101	388790.551	62131.588	458.421	206.5	303	-60
PEDR0102	388830.905	62151.082	436.239	88.9	303	-50
PEDR0103	388675.597	62034.624	504.309	109	124	-65
PEDR0104	388564.767	61637.65	657.123	132.2	124	-55
PEDR0105	388393.536	61889.54	642.195	250.8	124	-67
PEDR0106	388735.943	61748.47	601.03	149	124	-51.55
PEDR0107	388528.836	61699.505	663.616	150.9	124	-50
PEDR0108	388619.386	61663.915	643.39	131	0	-90
PEDR0109	388286.804	61816.143	640.855	100	124	-68
PEDR0110	388400.058	61801.987	636.29	149	124	-70

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
PEDR0111	388392.011	61831.336	652.562	106.7	0	-90
PEDR0112	388620.456	61663.213	643.378	126.5	124	-55
PEDR0113	388556.003	61654.65	656.58	150.7	124	-50
PEDR0114	388287.442	61815.668	640.818	75.3	124	-50
PEDR0115	388400.695	61801.51	636.374	143.6	124	-50
PEDR0116	388615.395	61666.677	643.357	125	304	-55
PEDR0117	388329.978	61749.885	612.647	66.8	123	-50
PEDR0118	388817.976	61789.67	578.739	84.2	124	-55
PEDR0119	388640.863	61717.251	600.898	98	124	-65
PEDR0120	388204.962	61865.823	675.015	86.4	124	-82
PEDR0121	388284.416	61817.657	640.726	75	304	-65
PEDR0122	388580.285	61643.442	650.982	125.2	124	-50
PEDR0123	388682.683	61746.429	578.031	147.5	124	-60
PEDR0124	388399.714	61802.268	636.064	137.6	0	-90
PEDR0125	388817.844	61789.704	578.667	137	0	-90
PEDR0126	388285.101	61817.306	640.871	90	0	-90
PEDR0127	388328.854	61750.72	612.631	76.9	0	-90
PEDR0128	388366.415	61836.58	657.532	106.4	124	-55
PEDR0129	388396.412	61804.479	636.229	110.5	304	-50
PEDR0130	388205.315	61865.5	674.965	97.4	124	-65
PEDR0131	388767.607	61820.195	546.875	80	124	-55
PEDR0132	388814.867	61791.562	578.676	60.5	304	-60
PEDR0133	388498.035	61660.823	670.107	75	124	-55
PEDR0134	388307.476	61972.298	632.059	180	124	-68
PEDR0135	388365.442	61837.22	657.479	175	0	-90
PEDR0136	388137.099	61848.606	665.111	80.2	124	-60
PEDR0137	388753.986	61827.894	541.154	89	0	-90
PEDR0138	388497.213	61661.36	670.176	75	0	-90
PEDR0139	388380.298	61928.44	619.378	150	124	-67
PEDR0141	388425.771	61920.567	616.345	218.1	124	-70
PEDR0142	388502.927	61663.974	674.506	80.2	304	-55
PEDR0143	388762.679	61823.024	546.855	65	304	-60
PEDR0144	388305.097	61973.583	632.229	200	124	-50
PEDR0145	388367.761	61842.889	660.594	45	304	-55
PEDR0146	388489.591	61642.322	661.951	60	124	-50
PEDR0147	388163.086	62067.85	760.118	74.3	124	-72
PEDR0148	388489.591	61642.322	661.951	50	304	-70
PEDR0149	388390	61709	602	16.5	123	-50
PEDR0150	388305.097	61973.583	632.229	20.8	0	-90
PEDR0151	388169.004	61973.273	765.703	1	124	-90
PGH01	387579.718	62675.941	397.65	54.7	90	-90
PGH02	385904.167	61574.485	108.221	71.3	90	-90
PGH03	386116	60771	140	42	90	-90
PGH04	385713.948	61095.642	70.833	25	0	-90
PGH05	385714.489	62123.823	101.223	30	0	-90

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
PGH06	386394.279	62969.775	167.255	28	0	-90
PGH07	387522.473	63748.524	169.991	25.2	0	-90
PGH08	389088.667	62569.174	355.841	30	0	-90
PGH09	388424.727	61316.406	626.988	40	0	-90
PKD-01	388570	61240	461	360.9	180	-50
PKD-02	388104	61335	429	306.5	180	-50
PKD-02R	388104	61337	429	70	180	-50
PLD-01	387755	64900	630	300.2	335	-60
PLD-02	387826	64754	525	303.6	335	-50
PLD-03	388005	64888	580	262	335	-50
PLS-01	395340	64620	900	172	180	-55
PMD-01	389029.886	62382.094	431.174	183	180	-60
PMD-02	389199.996	62529.995	415.193	207.7	181	-55
PMD-03	389014.726	62154.926	501.104	326.5	205	-50
PNS-01	387928.309	62588.215	554.748	242.7	180	-55
PP-01	388892.796	62251.793	417.7	100	0	-50
PP-02	388390.882	61794.348	632.72	155	180	-50
PP-03	387942.808	62157.349	642.245	115.6	170	-60
PP-04	388698.938	61662.922	635.08	130	180	-55
PP-05	388565.813	61591.66	662.16	119.1	180	-45
PP-06	388239.634	61855.565	671.793	136.6	180	-45
PP-07	388299.656	61606.078	594.34	130	135	-45
PP-08	388544.142	61949.706	601.117	130	205	-60
PP-09	388703.457	62213.631	515.164	108.4	180	-45
PP-10	388666.886	62019.22	498.864	130	250	-45
PP-11	388477.867	62067.501	504.563	100	180	-50
PP-12	388503.994	62172.489	490.16	113.5	180	-45
PP-13	388673.266	62145.712	557.802	100	250	-45
PP-14	388211.653	62140.302	680.008	120	180	-45
PP-15	388244.106	62164.768	656.769	96.8	180	-45
PP-16	388134.918	62008.458	782.94	130	185	-50
PTS-01	392230	63000	594	159	360	-70
PTS-02	392180	62700	666	175.25	180	-60
PTS-03	392280	62550	660	175.25	180	-60
PTS-04	391900	62560	620	175.1	180	-60
PTS-05	391780	62800	670	61.3	180	-75
PTS-06	391380	62830	675	81	180	-60
PTS-07	390910	63050	660	78.1	340	-60
PTS-08	390500	63050	625	155.5	160	-60
PTS-09	390370	63280	558	56	160	-60
PTS-10	390780	63410	608	46.75	340	-60
PTS-11	390554	63955	670	150	340	-60
PTS-12	390428	64218	685	150.2	340	-60
PTS-13	389813	63042	503	135	340	-60
PTS-14	389930	62540	550	174	340	-60

Hole ID	Collar East (WGS84 51N)	Collar North (WGS84 51N)	Collar RL (m)	End of Hole Depth (m)	Azimuth	First of Dip
PTS-15	392000	62680	638	90.8	360	-60
STD001	386658.936	62025.181	262.779	300	240	-45
STD002	386292.63	62121.598	234.681	150	240	-70
STD003	386124	61389	119.372	150	220	-60
STD004	386006	61466	158.968	59.5	40	-60
STD005	385998	60756	97	150	220	-60
STD006	386195	60836	128	150	220	-60
STD007	386364	60772	130	150	220	-60
STD008	386592	60922	181	150	220	-60
STD009	386350	61200	132.851	150	220	-60
STD010	386851	60697	225	150	220	-60
STD011	386843	61182	186	106.2	220	-60
STD012	387100	60950	305.67	150	220	-60
STD013	386591	61399	211	104.4	220	-60
STD014	385834.755	61767.452	180.901	150	220	-60
STD015	386350	61700	213.852	150	220	-60
STD016	386074	61875	100	150	220	-60
STD017	386793.751	61858.585	294.147	150	220	-60
STD018	386601.743	62106.695	248.44	178.9	220	-60
STD019	386209.38	62254.333	202.802	150	220	-60
STD020	385977.666	62407.319	174.96	150	220	-60
STD021	385909.283	62669.709	149.244	150	220	-60
STD022	386438.229	62650.577	192.677	150	220	-60
STD023	386331	62890	167	150	220	-60
STD024	387111	62978	305	150	220	-60
STD025	386620	62887	275	193.1	220	-60
STD026	386846	62880	286	123.8	220	-60
STD027	386792	62727	362	93.5	220	-60
STD028	387120.849	62472.972	464.282	53.3	40	-60
STD029	386656	62603	414	150	220	-60
STD030	386807	62504	396	150	220	-60

DISCLAIMER

This document: (i) is for information purposes, (ii) may or may not contain certain "forward-looking statements", (iii) does not constitute or form part of any offer for sale or subscription of or solicitation or invitation of any offer to buy or subscribe for, or sell any securities of PT Merdeka Copper Gold Tbk ("Merdeka") and/or PT Merdeka Battery Materials Tbk or to enter into any transaction under Indonesia Capital Markets Law or any other prevailing laws in any jurisdiction. All statements, other than statements of historical fact, which address activities, events, or developments that Merdeka and its subsidiaries (together referred to as "Merdeka Group") believe, expect, or anticipate will or may occur in the future, are forward-looking statements. Forward-looking statements are often, but not always, identified by the use of words such as "seek", "anticipate", "believe", "plan", "estimate", "targeting", "expect", "project", and "intend" and statements that an event or result "may", "will", "can", "should", "could", or "might" occur or be achieved and other similar expressions including the negative of those terms or other comparable terminology. These forward-looking statements, including but not limited to those with respect to permitting and development timetables, mineral grades, metallurgical recoveries, and potential production, reflect the current internal projections, expectations, or beliefs of Merdeka Group based on information currently available to Merdeka Group. Statements in this document that are forward-looking and involve numerous risks and uncertainties that could cause actual results to differ materially from expected results are based on Merdeka Group's current beliefs and assumptions regarding many factors affecting its business (including affect the outcome and financial effects of the plans and events described herein); statements in documents are provided to allow potential investors and/or the reader understand Merdeka Group management's opinions in respect of future. There can be no assurance that (i) Merdeka Group have correctly measured or identified all the factors affecting its business or the extent of their likely impact, (ii) the publicly available information with respect to these factors on which Merdeka Group's analysis is complete and/or accurate, and/or correct and/or (iii) Merdeka Group's strategy, which is based in part on this analysis, will be successful. Merdeka Group expressly undertakes no obligation to update and/or revise any such forward-looking statements if circumstances or Merdeka Group management's estimates or opinions should change except as required by applicable laws. The reader is cautioned not to place undue reliance on forward-looking statements and extra cautions on capital market trading.

NO REPRESENTATION, WARRANTY OR LIABILITY

Whilst it is provided in good faith, no representation or warranty is made by Merdeka and/or any of its affiliates, its advisers, consultants, agents, employees, or any of its authorised representatives as to the accuracy, completeness, currency, or reasonableness of the information in this document and/or provided in connection with it, including the accuracy or attainability of any forward-looking statements set out in this document. Merdeka Group does not accept any responsibility to inform you and/or update of any matter arising and/or coming to Merdeka Group's notice after the date of this document which may affect any matter referred to in this document. Any liability of Merdeka Group and/or any of its affiliates, consultants, agents, employees, or any of its authorised representatives to you or to any other person or entity arising out of this document pursuant to any applicable law is, to the maximum extent permitted by law, expressly disclaimed and excluded. This document is not guarantee of future performance, and undue reliance should not be placed on them as they involve known and unknown risks and uncertainties, which may cause actual performance and financial results in future periods to differ significantly from any projections of future performance and/or result expressed and/or implied by such forward-looking document.